Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

New methods for numerical evaluation of ultra-high degree and order associated Legendre functions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966135" target="_blank" >RIV/49777513:23520/22:43966135 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11200-022-0830-9" target="_blank" >https://link.springer.com/article/10.1007/s11200-022-0830-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11200-022-0830-9" target="_blank" >10.1007/s11200-022-0830-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    New methods for numerical evaluation of ultra-high degree and order associated Legendre functions

  • Popis výsledku v původním jazyce

    We improve the precision and computation speed of the fully-normalized associated Legendre functions (fnALFs) for ultra-high degrees and orders of spherical harmonic transforms. We take advantage of their numerical behaviour of and propose two new methods for solving an underflow/overflow problem in their calculation. We specifically discuss the application of the two methods in the fixed-order increasing-degree recursion computation technique. The first method uses successive ratios of fnALFs and the second method, called the Midway method, starts iteration from tiny initial values, which are still in the range of the IEEE double-precision environment, rather than from sectorial fnALFs. The underflow/overflow problem in the successive ratio method is handled by using a logarithm-based method and the extended range arithmetic. We validate both methods using numerical tests and compare their results with the X-number method in terms of precision, stability, and speed. The results show that the relative precision of the proposed methods is better than 10-9 for the maximum degree of 100000, compared to results derived by the high precision Wolfram’s Mathematica software. Average CPU times required for evaluation of fnALFs over different latitudes demonstrate that the two proposed methods are faster by about 10-30% and 20-90% with respect to the X-number method for the maximum degree in the range of 50-65000.

  • Název v anglickém jazyce

    New methods for numerical evaluation of ultra-high degree and order associated Legendre functions

  • Popis výsledku anglicky

    We improve the precision and computation speed of the fully-normalized associated Legendre functions (fnALFs) for ultra-high degrees and orders of spherical harmonic transforms. We take advantage of their numerical behaviour of and propose two new methods for solving an underflow/overflow problem in their calculation. We specifically discuss the application of the two methods in the fixed-order increasing-degree recursion computation technique. The first method uses successive ratios of fnALFs and the second method, called the Midway method, starts iteration from tiny initial values, which are still in the range of the IEEE double-precision environment, rather than from sectorial fnALFs. The underflow/overflow problem in the successive ratio method is handled by using a logarithm-based method and the extended range arithmetic. We validate both methods using numerical tests and compare their results with the X-number method in terms of precision, stability, and speed. The results show that the relative precision of the proposed methods is better than 10-9 for the maximum degree of 100000, compared to results derived by the high precision Wolfram’s Mathematica software. Average CPU times required for evaluation of fnALFs over different latitudes demonstrate that the two proposed methods are faster by about 10-30% and 20-90% with respect to the X-number method for the maximum degree in the range of 50-65000.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-13713S" target="_blank" >GA21-13713S: Odhady nejistot pro integrální transformace v geodézii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Studia Geophysica et Geodaetica

  • ISSN

    0039-3169

  • e-ISSN

    1573-1626

  • Svazek periodika

    66

  • Číslo periodika v rámci svazku

    3-4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    17

  • Strana od-do

    81-97

  • Kód UT WoS článku

    000883430500001

  • EID výsledku v databázi Scopus

    2-s2.0-85141979721