New methods for numerical evaluation of ultra-high degree and order associated Legendre functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966135" target="_blank" >RIV/49777513:23520/22:43966135 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11200-022-0830-9" target="_blank" >https://link.springer.com/article/10.1007/s11200-022-0830-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11200-022-0830-9" target="_blank" >10.1007/s11200-022-0830-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New methods for numerical evaluation of ultra-high degree and order associated Legendre functions
Popis výsledku v původním jazyce
We improve the precision and computation speed of the fully-normalized associated Legendre functions (fnALFs) for ultra-high degrees and orders of spherical harmonic transforms. We take advantage of their numerical behaviour of and propose two new methods for solving an underflow/overflow problem in their calculation. We specifically discuss the application of the two methods in the fixed-order increasing-degree recursion computation technique. The first method uses successive ratios of fnALFs and the second method, called the Midway method, starts iteration from tiny initial values, which are still in the range of the IEEE double-precision environment, rather than from sectorial fnALFs. The underflow/overflow problem in the successive ratio method is handled by using a logarithm-based method and the extended range arithmetic. We validate both methods using numerical tests and compare their results with the X-number method in terms of precision, stability, and speed. The results show that the relative precision of the proposed methods is better than 10-9 for the maximum degree of 100000, compared to results derived by the high precision Wolfram’s Mathematica software. Average CPU times required for evaluation of fnALFs over different latitudes demonstrate that the two proposed methods are faster by about 10-30% and 20-90% with respect to the X-number method for the maximum degree in the range of 50-65000.
Název v anglickém jazyce
New methods for numerical evaluation of ultra-high degree and order associated Legendre functions
Popis výsledku anglicky
We improve the precision and computation speed of the fully-normalized associated Legendre functions (fnALFs) for ultra-high degrees and orders of spherical harmonic transforms. We take advantage of their numerical behaviour of and propose two new methods for solving an underflow/overflow problem in their calculation. We specifically discuss the application of the two methods in the fixed-order increasing-degree recursion computation technique. The first method uses successive ratios of fnALFs and the second method, called the Midway method, starts iteration from tiny initial values, which are still in the range of the IEEE double-precision environment, rather than from sectorial fnALFs. The underflow/overflow problem in the successive ratio method is handled by using a logarithm-based method and the extended range arithmetic. We validate both methods using numerical tests and compare their results with the X-number method in terms of precision, stability, and speed. The results show that the relative precision of the proposed methods is better than 10-9 for the maximum degree of 100000, compared to results derived by the high precision Wolfram’s Mathematica software. Average CPU times required for evaluation of fnALFs over different latitudes demonstrate that the two proposed methods are faster by about 10-30% and 20-90% with respect to the X-number method for the maximum degree in the range of 50-65000.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-13713S" target="_blank" >GA21-13713S: Odhady nejistot pro integrální transformace v geodézii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studia Geophysica et Geodaetica
ISSN
0039-3169
e-ISSN
1573-1626
Svazek periodika
66
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
81-97
Kód UT WoS článku
000883430500001
EID výsledku v databázi Scopus
2-s2.0-85141979721