Polynomial curves with projections to PH curves
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966146" target="_blank" >RIV/49777513:23520/22:43966146 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167839622000954" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167839622000954</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2022.102159" target="_blank" >10.1016/j.cagd.2022.102159</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polynomial curves with projections to PH curves
Popis výsledku v původním jazyce
Despite the fact that the orthogonal projection of a spatial Pythagorean hodograph (PH) curve into the plane is not a planar PH curve in general, we can find special cases such that the PH property is preserved when the curve is projected. In Farouki et al. (2021) the authors studied how to generate spatial PH curves with planar PH projections. Their approach and presented results motivated us to continue and extend this investigation. We study geometric conditions under which a spatial curve is projected to a PH curve. For this purpose, we introduced a suitable geometric characterization of the curves with PH property via intersection multiplicity of the associated curves described by the hodograph mapping with the absolute conic. As a consequence we will show that a generic polynomial curve of degree higher than five possesses no parallel projection to a PH curve. On contrary, for a spatial cubic there are finitely many ways how to orthogonally project it to a planar PH cubic. And the same holds for oblique parallel projections of spatial quintics. Hence these cases are examined in more detail.
Název v anglickém jazyce
Polynomial curves with projections to PH curves
Popis výsledku anglicky
Despite the fact that the orthogonal projection of a spatial Pythagorean hodograph (PH) curve into the plane is not a planar PH curve in general, we can find special cases such that the PH property is preserved when the curve is projected. In Farouki et al. (2021) the authors studied how to generate spatial PH curves with planar PH projections. Their approach and presented results motivated us to continue and extend this investigation. We study geometric conditions under which a spatial curve is projected to a PH curve. For this purpose, we introduced a suitable geometric characterization of the curves with PH property via intersection multiplicity of the associated curves described by the hodograph mapping with the absolute conic. As a consequence we will show that a generic polynomial curve of degree higher than five possesses no parallel projection to a PH curve. On contrary, for a spatial cubic there are finitely many ways how to orthogonally project it to a planar PH cubic. And the same holds for oblique parallel projections of spatial quintics. Hence these cases are examined in more detail.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-08009K" target="_blank" >GF21-08009K: Zobecněné symetrie a ekvivalence geometrických dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
1879-2332
Svazek periodika
99
Číslo periodika v rámci svazku
Nov 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
nestrankovano
Kód UT WoS článku
000878094700001
EID výsledku v databázi Scopus
2-s2.0-85140486935