Neural-network-based fluid–structure interaction applied to vortex-induced vibration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968682" target="_blank" >RIV/49777513:23520/23:43968682 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377042723001140?pes=vor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042723001140?pes=vor</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2023.115170" target="_blank" >10.1016/j.cam.2023.115170</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural-network-based fluid–structure interaction applied to vortex-induced vibration
Popis výsledku v původním jazyce
In this paper, a fluid–structure interaction (FSI) solver with neural-network-based fluid-flow prediction is proposed. This concept is applied to the problem of vortex-induced vibration of a cylinder. The majority of studies that are concerned with fluid-flow prediction using neural networks solve problems with fixed boundary. In this paper, a convolutional neural network (CNN) is used to predict unsteady incompressible laminar flow with moving boundary. A deformable non-Cartesian grid, which traces the boundary of the fluid domain, is used in this paper. The CNN is trained for oscillating cylinder with various frequencies and amplitudes. The dynamics of the elastically-mounted cylinder is modelled using a linear spring–mass–damper model and solved by an implicit differential scheme. The results show that the CNN-based FSI solver is capable of capturing the so-called lock-in phenomenon for the problem of vortex-induced vibration of a cylinder and the quantitative behaviour is similar to the results of the CFD-based FSI solver. Moreover, the CNN-based FSI solver is two orders of magnitude faster than the CFD-based FSI solver and the speedup is expected to be even greater on larger problems.
Název v anglickém jazyce
Neural-network-based fluid–structure interaction applied to vortex-induced vibration
Popis výsledku anglicky
In this paper, a fluid–structure interaction (FSI) solver with neural-network-based fluid-flow prediction is proposed. This concept is applied to the problem of vortex-induced vibration of a cylinder. The majority of studies that are concerned with fluid-flow prediction using neural networks solve problems with fixed boundary. In this paper, a convolutional neural network (CNN) is used to predict unsteady incompressible laminar flow with moving boundary. A deformable non-Cartesian grid, which traces the boundary of the fluid domain, is used in this paper. The CNN is trained for oscillating cylinder with various frequencies and amplitudes. The dynamics of the elastically-mounted cylinder is modelled using a linear spring–mass–damper model and solved by an implicit differential scheme. The results show that the CNN-based FSI solver is capable of capturing the so-called lock-in phenomenon for the problem of vortex-induced vibration of a cylinder and the quantitative behaviour is similar to the results of the CFD-based FSI solver. Moreover, the CNN-based FSI solver is two orders of magnitude faster than the CFD-based FSI solver and the speedup is expected to be even greater on larger problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
1879-1778
Svazek periodika
428
Číslo periodika v rámci svazku
AUG 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000962241600001
EID výsledku v databázi Scopus
2-s2.0-85149732684