Homogenization and numerical algorithms for two-scale modeling of porous media with self-contact in micropores
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968884" target="_blank" >RIV/49777513:23520/23:43968884 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377042723002200?ref=cra_js_challenge&fr=RR-1" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042723002200?ref=cra_js_challenge&fr=RR-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2023.115276" target="_blank" >10.1016/j.cam.2023.115276</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homogenization and numerical algorithms for two-scale modeling of porous media with self-contact in micropores
Popis výsledku v původním jazyce
The paper presents two-scale numerical algorithms for stress–strain analysis of porous media featured by self-contact at pore level. The porosity is constituted as a periodic lattice generated by a representative cell consisting of elastic skeleton and a void pore. Unilateral frictionless contact is considered between opposing surfaces of the pore. For the homogenized model derived in our previous work, we justify incremental formulations and propose several variants of two-scale algorithms which commute iteratively solving of the micro- and the macro-level contact subproblems. A dual formulation which takes advantage of the assumed microstructure periodicity and a small deformation framework, is derived for the contact problems at the micro-level. This enables to apply the semi-smooth Newton method. For the global, macrolevel step two alternatives are tested; one relying on a frozen contact identified at the microlevel, the other based on a reduced contact associated with boundaries of contact sets. Numerical examples of 2D deforming structures are presented as a proof of the concept.
Název v anglickém jazyce
Homogenization and numerical algorithms for two-scale modeling of porous media with self-contact in micropores
Popis výsledku anglicky
The paper presents two-scale numerical algorithms for stress–strain analysis of porous media featured by self-contact at pore level. The porosity is constituted as a periodic lattice generated by a representative cell consisting of elastic skeleton and a void pore. Unilateral frictionless contact is considered between opposing surfaces of the pore. For the homogenized model derived in our previous work, we justify incremental formulations and propose several variants of two-scale algorithms which commute iteratively solving of the micro- and the macro-level contact subproblems. A dual formulation which takes advantage of the assumed microstructure periodicity and a small deformation framework, is derived for the contact problems at the micro-level. This enables to apply the semi-smooth Newton method. For the global, macrolevel step two alternatives are tested; one relying on a frozen contact identified at the microlevel, the other based on a reduced contact associated with boundaries of contact sets. Numerical examples of 2D deforming structures are presented as a proof of the concept.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-00863K" target="_blank" >GF22-00863K: Řiditelné metamateriály a chytré struktury: Nelineární problémy, modelování a experimenty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
1879-1778
Svazek periodika
432
Číslo periodika v rámci svazku
NOV 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
001001191800001
EID výsledku v databázi Scopus
2-s2.0-85159168460