Detection of objects and their parts using Transformers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969182" target="_blank" >RIV/49777513:23520/23:43969182 - isvavai.cz</a>
Výsledek na webu
<a href="http://svk.fav.zcu.cz/download/proceedings_svk_2023.pdf" target="_blank" >http://svk.fav.zcu.cz/download/proceedings_svk_2023.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of objects and their parts using Transformers
Popis výsledku v původním jazyce
Standard detection and segmentation methods find objects in an image that can often be clearly distinguished from each other. However, there are also tasks, e.g. Visual Question Answering, that require more detailed descriptions, such as attributes or relations with other objects. In such cases, there is already an intermingling, as a more detailed description can belong to several types of objects, e.g. the leg category can be part of the person category, but also the chair category.In this work, new basic methods for detecting objects and their parts are created. These methods are based on Transformers and the classification layer is created in the same way as in the case of the existing methods of the used dataset. Finally, the methods are compared and evaluated. The best-performing Transformer method is DAB-Deformable-DETR which achieves 35,2 AP for objects and 16,2 AP for parts.
Název v anglickém jazyce
Detection of objects and their parts using Transformers
Popis výsledku anglicky
Standard detection and segmentation methods find objects in an image that can often be clearly distinguished from each other. However, there are also tasks, e.g. Visual Question Answering, that require more detailed descriptions, such as attributes or relations with other objects. In such cases, there is already an intermingling, as a more detailed description can belong to several types of objects, e.g. the leg category can be part of the person category, but also the chair category.In this work, new basic methods for detecting objects and their parts are created. These methods are based on Transformers and the classification layer is created in the same way as in the case of the existing methods of the used dataset. Finally, the methods are compared and evaluated. The best-performing Transformer method is DAB-Deformable-DETR which achieves 35,2 AP for objects and 16,2 AP for parts.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů