FCN-Boosted Historical Map Segmentation with Little Training Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969346" target="_blank" >RIV/49777513:23520/23:43969346 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-41676-7_30" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-41676-7_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-41676-7_30" target="_blank" >10.1007/978-3-031-41676-7_30</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FCN-Boosted Historical Map Segmentation with Little Training Data
Popis výsledku v původním jazyce
This paper deals with automatic image segmentation in poorly resourced areas. We concentrate on map content segmentation in historical maps as an example of such a domain. In such cases, conventional computer vision (CV) approaches fail in unexpected unique regions such as map content area exceeding the map frame, while deep learning methods lack boundary localization accuracy. Therefore, we propose an efficient approach that combines conventional CV techniques with deep learning and practically eliminates their drawbacks. To do so, we redefine the learning objective of a simple fully convolutional network to make the training easier and the model more robust even with few training samples. The presented method provides excellent results compared to more sophisticated but solely deep learning or traditional computer vision techniques as shown in “MapSeg” segmentation competition, where all other approaches were significantly outperformed. We further propose two additional approaches that improve the original method and set a new state-of-the-art result on the MapSeg dataset. The methods are further tested on an extended version of the Map Border dataset to show their robustness.
Název v anglickém jazyce
FCN-Boosted Historical Map Segmentation with Little Training Data
Popis výsledku anglicky
This paper deals with automatic image segmentation in poorly resourced areas. We concentrate on map content segmentation in historical maps as an example of such a domain. In such cases, conventional computer vision (CV) approaches fail in unexpected unique regions such as map content area exceeding the map frame, while deep learning methods lack boundary localization accuracy. Therefore, we propose an efficient approach that combines conventional CV techniques with deep learning and practically eliminates their drawbacks. To do so, we redefine the learning objective of a simple fully convolutional network to make the training easier and the model more robust even with few training samples. The presented method provides excellent results compared to more sophisticated but solely deep learning or traditional computer vision techniques as shown in “MapSeg” segmentation competition, where all other approaches were significantly outperformed. We further propose two additional approaches that improve the original method and set a new state-of-the-art result on the MapSeg dataset. The methods are further tested on an extended version of the Map Border dataset to show their robustness.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Document Analysis and Recognition – ICDAR 2023
ISBN
978-3-031-41675-0
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
14
Strana od-do
520-533
Název nakladatele
Springer
Místo vydání
neuveden
Místo konání akce
San José, CA, USA
Datum konání akce
21. 8. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—