Comparative Analyses of Multilingual Sentiment Analysis Systems for News and Social Media
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43970158" target="_blank" >RIV/49777513:23520/23:43970158 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/book/10.1007/978-3-031-24340-0" target="_blank" >https://link.springer.com/book/10.1007/978-3-031-24340-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-24340-0_20" target="_blank" >10.1007/978-3-031-24340-0_20</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative Analyses of Multilingual Sentiment Analysis Systems for News and Social Media
Popis výsledku v původním jazyce
In this paper, we present evaluation of three in-house sentiment analysis (SA) systems originally designed for three distinct SA tasks, in a highly multilingual setting. For the evaluation, we collected a large number of available gold standard datasets, in different languages and varied text types. The aim of using different domain datasets was to achieve a clear snapshot of the level of overall performance of the systems and thus obtain a better quality of an evaluation. We compare the results obtained with the best performing systems evaluated on their basis and performed an in-depth error analysis. Based on the results, we can see that some systems perform better for different datasets and tasks than the ones they were designed for, showing that we could replace one system with another and gain an improvement in performance. Our results are hardly comparable with the original dataset results because the datasets often contain a different number of polarity classes than we used, and for some datasets, there are even no basic results. For the cases in which a comparison was possible, our results show that our systems perform very well in view of multilinguality.
Název v anglickém jazyce
Comparative Analyses of Multilingual Sentiment Analysis Systems for News and Social Media
Popis výsledku anglicky
In this paper, we present evaluation of three in-house sentiment analysis (SA) systems originally designed for three distinct SA tasks, in a highly multilingual setting. For the evaluation, we collected a large number of available gold standard datasets, in different languages and varied text types. The aim of using different domain datasets was to achieve a clear snapshot of the level of overall performance of the systems and thus obtain a better quality of an evaluation. We compare the results obtained with the best performing systems evaluated on their basis and performed an in-depth error analysis. Based on the results, we can see that some systems perform better for different datasets and tasks than the ones they were designed for, showing that we could replace one system with another and gain an improvement in performance. Our results are hardly comparable with the original dataset results because the datasets often contain a different number of polarity classes than we used, and for some datasets, there are even no basic results. For the cases in which a comparison was possible, our results show that our systems perform very well in view of multilinguality.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: VaV inteligentních komponent pokročilých technologií pro plzeňskou metropolitní oblast</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational Linguistics and Intelligent Text Processing
ISBN
978-3-031-24339-4
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
20
Strana od-do
260-279
Název nakladatele
Springer
Místo vydání
Cam
Místo konání akce
La Rochelle, France
Datum konání akce
7. 4. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—