Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Far-zone effects for spherical integral transformations I: Formulas for the radial boundary value problem and its derivatives

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43969671" target="_blank" >RIV/49777513:23520/24:43969671 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10712-023-09818-4" target="_blank" >https://link.springer.com/article/10.1007/s10712-023-09818-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10712-023-09818-4" target="_blank" >10.1007/s10712-023-09818-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Far-zone effects for spherical integral transformations I: Formulas for the radial boundary value problem and its derivatives

  • Popis výsledku v původním jazyce

    Integral transformations represent an important mathematical tool for gravitational field modelling. A basic assumption of integral transformations is the global data coverage, but availability of high-resolution and accurate gravitational data may be restricted. Therefore, we decompose the global integration into two parts: 1) the effect of the near zone calculated by the numerical integration of data within a spherical cap, and 2) the effect of the far zone due to data beyond the spherical cap synthesised by harmonic expansions. Theoretical and numerical aspects of this decomposition have frequently been studied for isotropic integral transformations on the sphere, such as Hotine&apos;s, Poisson&apos;s, and Stokes&apos;s integral formulas. In this article, we systematically review the mathematical theory of the far-zone effects for the spherical integral formulas, which transform the disturbing gravitational potential or its purely radial derivatives into observable quantities of the gravitational field, i.e., the disturbing gravitational potential and its radial, horizontal, or mixed derivatives of the first, second, or third order. These formulas are implemented in a Matlab software and validated in a closed-loop simulation. Selected properties of the harmonic expansions are investigated by examining the behaviour of the truncation error coefficients. The mathematical formulations presented here are indispensable for practical solutions of direct or inverse problems in an accurate gravitational field modelling or when studying statistical properties of integral transformations.

  • Název v anglickém jazyce

    Far-zone effects for spherical integral transformations I: Formulas for the radial boundary value problem and its derivatives

  • Popis výsledku anglicky

    Integral transformations represent an important mathematical tool for gravitational field modelling. A basic assumption of integral transformations is the global data coverage, but availability of high-resolution and accurate gravitational data may be restricted. Therefore, we decompose the global integration into two parts: 1) the effect of the near zone calculated by the numerical integration of data within a spherical cap, and 2) the effect of the far zone due to data beyond the spherical cap synthesised by harmonic expansions. Theoretical and numerical aspects of this decomposition have frequently been studied for isotropic integral transformations on the sphere, such as Hotine&apos;s, Poisson&apos;s, and Stokes&apos;s integral formulas. In this article, we systematically review the mathematical theory of the far-zone effects for the spherical integral formulas, which transform the disturbing gravitational potential or its purely radial derivatives into observable quantities of the gravitational field, i.e., the disturbing gravitational potential and its radial, horizontal, or mixed derivatives of the first, second, or third order. These formulas are implemented in a Matlab software and validated in a closed-loop simulation. Selected properties of the harmonic expansions are investigated by examining the behaviour of the truncation error coefficients. The mathematical formulations presented here are indispensable for practical solutions of direct or inverse problems in an accurate gravitational field modelling or when studying statistical properties of integral transformations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA23-07031S" target="_blank" >GA23-07031S: Elipsoidické modelování planetárních gravitačních polí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Surveys in Geophysics

  • ISSN

    0169-3298

  • e-ISSN

    1573-0956

  • Svazek periodika

    45

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    33

  • Strana od-do

    977-1009

  • Kód UT WoS článku

    001217450100002

  • EID výsledku v databázi Scopus

    2-s2.0-85192085895