Far-zone effects for spherical integral transformations I: Formulas for the radial boundary value problem and its derivatives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43969671" target="_blank" >RIV/49777513:23520/24:43969671 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10712-023-09818-4" target="_blank" >https://link.springer.com/article/10.1007/s10712-023-09818-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10712-023-09818-4" target="_blank" >10.1007/s10712-023-09818-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Far-zone effects for spherical integral transformations I: Formulas for the radial boundary value problem and its derivatives
Popis výsledku v původním jazyce
Integral transformations represent an important mathematical tool for gravitational field modelling. A basic assumption of integral transformations is the global data coverage, but availability of high-resolution and accurate gravitational data may be restricted. Therefore, we decompose the global integration into two parts: 1) the effect of the near zone calculated by the numerical integration of data within a spherical cap, and 2) the effect of the far zone due to data beyond the spherical cap synthesised by harmonic expansions. Theoretical and numerical aspects of this decomposition have frequently been studied for isotropic integral transformations on the sphere, such as Hotine's, Poisson's, and Stokes's integral formulas. In this article, we systematically review the mathematical theory of the far-zone effects for the spherical integral formulas, which transform the disturbing gravitational potential or its purely radial derivatives into observable quantities of the gravitational field, i.e., the disturbing gravitational potential and its radial, horizontal, or mixed derivatives of the first, second, or third order. These formulas are implemented in a Matlab software and validated in a closed-loop simulation. Selected properties of the harmonic expansions are investigated by examining the behaviour of the truncation error coefficients. The mathematical formulations presented here are indispensable for practical solutions of direct or inverse problems in an accurate gravitational field modelling or when studying statistical properties of integral transformations.
Název v anglickém jazyce
Far-zone effects for spherical integral transformations I: Formulas for the radial boundary value problem and its derivatives
Popis výsledku anglicky
Integral transformations represent an important mathematical tool for gravitational field modelling. A basic assumption of integral transformations is the global data coverage, but availability of high-resolution and accurate gravitational data may be restricted. Therefore, we decompose the global integration into two parts: 1) the effect of the near zone calculated by the numerical integration of data within a spherical cap, and 2) the effect of the far zone due to data beyond the spherical cap synthesised by harmonic expansions. Theoretical and numerical aspects of this decomposition have frequently been studied for isotropic integral transformations on the sphere, such as Hotine's, Poisson's, and Stokes's integral formulas. In this article, we systematically review the mathematical theory of the far-zone effects for the spherical integral formulas, which transform the disturbing gravitational potential or its purely radial derivatives into observable quantities of the gravitational field, i.e., the disturbing gravitational potential and its radial, horizontal, or mixed derivatives of the first, second, or third order. These formulas are implemented in a Matlab software and validated in a closed-loop simulation. Selected properties of the harmonic expansions are investigated by examining the behaviour of the truncation error coefficients. The mathematical formulations presented here are indispensable for practical solutions of direct or inverse problems in an accurate gravitational field modelling or when studying statistical properties of integral transformations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07031S" target="_blank" >GA23-07031S: Elipsoidické modelování planetárních gravitačních polí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Surveys in Geophysics
ISSN
0169-3298
e-ISSN
1573-0956
Svazek periodika
45
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
33
Strana od-do
977-1009
Kód UT WoS článku
001217450100002
EID výsledku v databázi Scopus
2-s2.0-85192085895