Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Far-Zone Effects for Spherical Integral Transformations II: Formulas for Horizontal Boundary Value Problems and Their Derivatives

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43971983" target="_blank" >RIV/49777513:23520/24:43971983 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10712-024-09842-y" target="_blank" >https://link.springer.com/article/10.1007/s10712-024-09842-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10712-024-09842-y" target="_blank" >10.1007/s10712-024-09842-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Far-Zone Effects for Spherical Integral Transformations II: Formulas for Horizontal Boundary Value Problems and Their Derivatives

  • Popis výsledku v původním jazyce

    Integral formulas represent a methodological basis for the determination of gravitational fields generated by planetary bodies. In particular, spherical integral transformations are preferred for their symmetrical properties with the integration domain being the entire surface of the sphere. However, global coverage of boundary values is rarely guaranteed. In practical calculations, we therefore split the spherical surface into a near zone and a far zone, for convenience, by a spherical cap. While the gravitational effect in the near zone can be evaluated by numerical integration over available boundary values, the contribution of the far zone has to be precisely quantified by other means. Far-zone effects for the isotropic integral transformations and those depending on the direct azimuth have adequately been discussed. On the other hand, this subject has only marginally been addressed for the spherical integral formulas that are, except for other variables, also functions of the backward azimuth.In this article, we significantly advance the existing geodetic methodology by deriving the far-zone effects for the two classes of spherical integral transformations: 1) the analytical solutions of the horizontal, horizontal-horizontal, and horizontal-horizontal-horizontal BVPs including their generalisations with arbitrary-order vertical derivative of respective boundary conditions, 2) spatial (vertical, horizontal, or mixed) derivatives of these generalised analytical solutions up to the third order. The integral and spectral forms of the far-zone effects are implemented in MATLAB software package and their consistency is tested in closed-loop simulations. The presented methodology can be employed in upward/downward continuation of potential field observables or for a quantification of error propagation through spherical integral transformations.

  • Název v anglickém jazyce

    Far-Zone Effects for Spherical Integral Transformations II: Formulas for Horizontal Boundary Value Problems and Their Derivatives

  • Popis výsledku anglicky

    Integral formulas represent a methodological basis for the determination of gravitational fields generated by planetary bodies. In particular, spherical integral transformations are preferred for their symmetrical properties with the integration domain being the entire surface of the sphere. However, global coverage of boundary values is rarely guaranteed. In practical calculations, we therefore split the spherical surface into a near zone and a far zone, for convenience, by a spherical cap. While the gravitational effect in the near zone can be evaluated by numerical integration over available boundary values, the contribution of the far zone has to be precisely quantified by other means. Far-zone effects for the isotropic integral transformations and those depending on the direct azimuth have adequately been discussed. On the other hand, this subject has only marginally been addressed for the spherical integral formulas that are, except for other variables, also functions of the backward azimuth.In this article, we significantly advance the existing geodetic methodology by deriving the far-zone effects for the two classes of spherical integral transformations: 1) the analytical solutions of the horizontal, horizontal-horizontal, and horizontal-horizontal-horizontal BVPs including their generalisations with arbitrary-order vertical derivative of respective boundary conditions, 2) spatial (vertical, horizontal, or mixed) derivatives of these generalised analytical solutions up to the third order. The integral and spectral forms of the far-zone effects are implemented in MATLAB software package and their consistency is tested in closed-loop simulations. The presented methodology can be employed in upward/downward continuation of potential field observables or for a quantification of error propagation through spherical integral transformations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA23-07031S" target="_blank" >GA23-07031S: Elipsoidické modelování planetárních gravitačních polí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Surveys in Geophysics

  • ISSN

    0169-3298

  • e-ISSN

    1573-0956

  • Svazek periodika

    45

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    51

  • Strana od-do

    1663-1713

  • Kód UT WoS článku

    001327603100001

  • EID výsledku v databázi Scopus

    2-s2.0-85205764038