Far-Zone Effects for Spherical Integral Transformations II: Formulas for Horizontal Boundary Value Problems and Their Derivatives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43971983" target="_blank" >RIV/49777513:23520/24:43971983 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10712-024-09842-y" target="_blank" >https://link.springer.com/article/10.1007/s10712-024-09842-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10712-024-09842-y" target="_blank" >10.1007/s10712-024-09842-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Far-Zone Effects for Spherical Integral Transformations II: Formulas for Horizontal Boundary Value Problems and Their Derivatives
Popis výsledku v původním jazyce
Integral formulas represent a methodological basis for the determination of gravitational fields generated by planetary bodies. In particular, spherical integral transformations are preferred for their symmetrical properties with the integration domain being the entire surface of the sphere. However, global coverage of boundary values is rarely guaranteed. In practical calculations, we therefore split the spherical surface into a near zone and a far zone, for convenience, by a spherical cap. While the gravitational effect in the near zone can be evaluated by numerical integration over available boundary values, the contribution of the far zone has to be precisely quantified by other means. Far-zone effects for the isotropic integral transformations and those depending on the direct azimuth have adequately been discussed. On the other hand, this subject has only marginally been addressed for the spherical integral formulas that are, except for other variables, also functions of the backward azimuth.In this article, we significantly advance the existing geodetic methodology by deriving the far-zone effects for the two classes of spherical integral transformations: 1) the analytical solutions of the horizontal, horizontal-horizontal, and horizontal-horizontal-horizontal BVPs including their generalisations with arbitrary-order vertical derivative of respective boundary conditions, 2) spatial (vertical, horizontal, or mixed) derivatives of these generalised analytical solutions up to the third order. The integral and spectral forms of the far-zone effects are implemented in MATLAB software package and their consistency is tested in closed-loop simulations. The presented methodology can be employed in upward/downward continuation of potential field observables or for a quantification of error propagation through spherical integral transformations.
Název v anglickém jazyce
Far-Zone Effects for Spherical Integral Transformations II: Formulas for Horizontal Boundary Value Problems and Their Derivatives
Popis výsledku anglicky
Integral formulas represent a methodological basis for the determination of gravitational fields generated by planetary bodies. In particular, spherical integral transformations are preferred for their symmetrical properties with the integration domain being the entire surface of the sphere. However, global coverage of boundary values is rarely guaranteed. In practical calculations, we therefore split the spherical surface into a near zone and a far zone, for convenience, by a spherical cap. While the gravitational effect in the near zone can be evaluated by numerical integration over available boundary values, the contribution of the far zone has to be precisely quantified by other means. Far-zone effects for the isotropic integral transformations and those depending on the direct azimuth have adequately been discussed. On the other hand, this subject has only marginally been addressed for the spherical integral formulas that are, except for other variables, also functions of the backward azimuth.In this article, we significantly advance the existing geodetic methodology by deriving the far-zone effects for the two classes of spherical integral transformations: 1) the analytical solutions of the horizontal, horizontal-horizontal, and horizontal-horizontal-horizontal BVPs including their generalisations with arbitrary-order vertical derivative of respective boundary conditions, 2) spatial (vertical, horizontal, or mixed) derivatives of these generalised analytical solutions up to the third order. The integral and spectral forms of the far-zone effects are implemented in MATLAB software package and their consistency is tested in closed-loop simulations. The presented methodology can be employed in upward/downward continuation of potential field observables or for a quantification of error propagation through spherical integral transformations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07031S" target="_blank" >GA23-07031S: Elipsoidické modelování planetárních gravitačních polí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Surveys in Geophysics
ISSN
0169-3298
e-ISSN
1573-0956
Svazek periodika
45
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
51
Strana od-do
1663-1713
Kód UT WoS článku
001327603100001
EID výsledku v databázi Scopus
2-s2.0-85205764038