On tiling spherical triangles into quadratic subpatches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972195" target="_blank" >RIV/49777513:23520/24:43972195 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167839624000785?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167839624000785?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2024.102344" target="_blank" >10.1016/j.cagd.2024.102344</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On tiling spherical triangles into quadratic subpatches
Popis výsledku v původním jazyce
Various interpolation and approximation methods arising in several practical applications in geometric modeling deal, at a particular step, with the problem of computing suitable rational patches (of low degree) on the unit sphere. Therefore, we are concerned with the construction of a system of spherical triangular patches with prescribed vertices that globally meet along common boundaries. In particular, we investigate various possibilities for tiling a given spherical triangular patch into quadratically parametrizable subpatches. We revisit the condition that the existence of a quadratic parameterization of a spherical triangle is equivalent to the sum of the interior angles of the triangle being pi, and then circumvent this limitation by studying alternative scenarios and present constructions of spherical macro-elements of the lowest possible degree. Applications of our method include algorithms relying on the construction of (interpolation) surfaces from prescribed rational normal vector fields.
Název v anglickém jazyce
On tiling spherical triangles into quadratic subpatches
Popis výsledku anglicky
Various interpolation and approximation methods arising in several practical applications in geometric modeling deal, at a particular step, with the problem of computing suitable rational patches (of low degree) on the unit sphere. Therefore, we are concerned with the construction of a system of spherical triangular patches with prescribed vertices that globally meet along common boundaries. In particular, we investigate various possibilities for tiling a given spherical triangular patch into quadratically parametrizable subpatches. We revisit the condition that the existence of a quadratic parameterization of a spherical triangle is equivalent to the sum of the interior angles of the triangle being pi, and then circumvent this limitation by studying alternative scenarios and present constructions of spherical macro-elements of the lowest possible degree. Applications of our method include algorithms relying on the construction of (interpolation) surfaces from prescribed rational normal vector fields.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Aided Geometric Design
ISSN
0167-8396
e-ISSN
1879-2332
Svazek periodika
111
Číslo periodika v rámci svazku
JUN 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001247346500001
EID výsledku v databázi Scopus
2-s2.0-85193814888