Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

COMICORDA: Dialogue Act Recognition in Comic Books

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972631" target="_blank" >RIV/49777513:23520/24:43972631 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2024.lrec-main.316/#" target="_blank" >https://aclanthology.org/2024.lrec-main.316/#</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    COMICORDA: Dialogue Act Recognition in Comic Books

  • Popis výsledku v původním jazyce

    Dialogue act (DA) recognition is usually realized from a speech signal that is transcribed and segmented into text. However, only a little work in DA recognition from images exists. Therefore, this paper concentrates on this modality and presents a novel DA recognition approach for image documents, namely comic books. To the best of our knowledge, this is the first study investigating dialogue acts from comic books and represents the first steps to building a model for comic book understanding. The proposed method is composed of the following steps: speech balloon segmentation, optical character recognition (OCR), and DA recognition itself. We use YOLOv8 for balloon segmentation, Google Vision for OCR, and Transformer-based models for DA classification. The experiments are performed on a newly created dataset comprising 1,438 annotated comic panels. It contains bounding boxes, transcriptions, and dialogue act annotation. We have achieved nearly 98% average precision for speech balloon segmentation and exceeded the accuracy of 70% for the DA recognition task. We also present an analysis of dialogue structure in the comics domain and compare it with the standard DA datasets, representing another contribution of this paper.

  • Název v anglickém jazyce

    COMICORDA: Dialogue Act Recognition in Comic Books

  • Popis výsledku anglicky

    Dialogue act (DA) recognition is usually realized from a speech signal that is transcribed and segmented into text. However, only a little work in DA recognition from images exists. Therefore, this paper concentrates on this modality and presents a novel DA recognition approach for image documents, namely comic books. To the best of our knowledge, this is the first study investigating dialogue acts from comic books and represents the first steps to building a model for comic book understanding. The proposed method is composed of the following steps: speech balloon segmentation, optical character recognition (OCR), and DA recognition itself. We use YOLOv8 for balloon segmentation, Google Vision for OCR, and Transformer-based models for DA classification. The experiments are performed on a newly created dataset comprising 1,438 annotated comic panels. It contains bounding boxes, transcriptions, and dialogue act annotation. We have achieved nearly 98% average precision for speech balloon segmentation and exceeded the accuracy of 70% for the DA recognition task. We also present an analysis of dialogue structure in the comics domain and compare it with the standard DA datasets, representing another contribution of this paper.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

  • ISBN

    978-2-493-81410-4

  • ISSN

    2951-2093

  • e-ISSN

    2522-2686

  • Počet stran výsledku

    13

  • Strana od-do

    3566-3578

  • Název nakladatele

    ELRA and ICCL

  • Místo vydání

    Paris

  • Místo konání akce

    Torino, Italy

  • Datum konání akce

    20. 5. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku