COMICORDA: Dialogue Act Recognition in Comic Books
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972631" target="_blank" >RIV/49777513:23520/24:43972631 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2024.lrec-main.316/#" target="_blank" >https://aclanthology.org/2024.lrec-main.316/#</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
COMICORDA: Dialogue Act Recognition in Comic Books
Popis výsledku v původním jazyce
Dialogue act (DA) recognition is usually realized from a speech signal that is transcribed and segmented into text. However, only a little work in DA recognition from images exists. Therefore, this paper concentrates on this modality and presents a novel DA recognition approach for image documents, namely comic books. To the best of our knowledge, this is the first study investigating dialogue acts from comic books and represents the first steps to building a model for comic book understanding. The proposed method is composed of the following steps: speech balloon segmentation, optical character recognition (OCR), and DA recognition itself. We use YOLOv8 for balloon segmentation, Google Vision for OCR, and Transformer-based models for DA classification. The experiments are performed on a newly created dataset comprising 1,438 annotated comic panels. It contains bounding boxes, transcriptions, and dialogue act annotation. We have achieved nearly 98% average precision for speech balloon segmentation and exceeded the accuracy of 70% for the DA recognition task. We also present an analysis of dialogue structure in the comics domain and compare it with the standard DA datasets, representing another contribution of this paper.
Název v anglickém jazyce
COMICORDA: Dialogue Act Recognition in Comic Books
Popis výsledku anglicky
Dialogue act (DA) recognition is usually realized from a speech signal that is transcribed and segmented into text. However, only a little work in DA recognition from images exists. Therefore, this paper concentrates on this modality and presents a novel DA recognition approach for image documents, namely comic books. To the best of our knowledge, this is the first study investigating dialogue acts from comic books and represents the first steps to building a model for comic book understanding. The proposed method is composed of the following steps: speech balloon segmentation, optical character recognition (OCR), and DA recognition itself. We use YOLOv8 for balloon segmentation, Google Vision for OCR, and Transformer-based models for DA classification. The experiments are performed on a newly created dataset comprising 1,438 annotated comic panels. It contains bounding boxes, transcriptions, and dialogue act annotation. We have achieved nearly 98% average precision for speech balloon segmentation and exceeded the accuracy of 70% for the DA recognition task. We also present an analysis of dialogue structure in the comics domain and compare it with the standard DA datasets, representing another contribution of this paper.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
ISBN
978-2-493-81410-4
ISSN
2951-2093
e-ISSN
2522-2686
Počet stran výsledku
13
Strana od-do
3566-3578
Název nakladatele
ELRA and ICCL
Místo vydání
Paris
Místo konání akce
Torino, Italy
Datum konání akce
20. 5. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—