Brno Mobile OCR Dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU135406" target="_blank" >RIV/00216305:26230/20:PU135406 - isvavai.cz</a>
Výsledek na webu
<a href="https://pero.fit.vutbr.cz/publications" target="_blank" >https://pero.fit.vutbr.cz/publications</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDAR.2019.00218" target="_blank" >10.1109/ICDAR.2019.00218</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Brno Mobile OCR Dataset
Popis výsledku v původním jazyce
We introduce the Brno Mobile OCR Dataset (B-MOD) for document Optical Character Recognition from low-quality images captured by handheld mobile devices. While OCR of high-quality scanned documents is a mature field where many commercial tools are available, and large datasets of text in the wild exist, no existing datasets can be used to develop and test document OCR methods robust to non-uniform lighting, image blur, strong noise, built-in denoising, sharpening, compression and other artifacts present in many photographs from mobile devices. This dataset contains 2 113 unique pages from random scientific papers, which were photographed by multiple people using 23 different mobile devices. The resulting 19 728 photographs of various visual quality are accompanied by precise positions and text annotations of 500k text lines. We further provide an evaluation methodology, including an evaluation server and a testset with non-public annotations. We provide a state-of-the-art text recognition baseline build on convolutional and recurrent neural networks trained with Connectionist Temporal Classification loss. This baseline achieves 2 %, 23 % and 73 % word error rates on easy, medium and hard parts of the dataset, respectively, confirming that the dataset is challenging. The presented dataset will enable future development and evaluation of document analysis for low-quality images. It is primarily intended for line-level text recognition, and can be further used for line localization, layout analysis, image restoration and text binarization.
Název v anglickém jazyce
Brno Mobile OCR Dataset
Popis výsledku anglicky
We introduce the Brno Mobile OCR Dataset (B-MOD) for document Optical Character Recognition from low-quality images captured by handheld mobile devices. While OCR of high-quality scanned documents is a mature field where many commercial tools are available, and large datasets of text in the wild exist, no existing datasets can be used to develop and test document OCR methods robust to non-uniform lighting, image blur, strong noise, built-in denoising, sharpening, compression and other artifacts present in many photographs from mobile devices. This dataset contains 2 113 unique pages from random scientific papers, which were photographed by multiple people using 23 different mobile devices. The resulting 19 728 photographs of various visual quality are accompanied by precise positions and text annotations of 500k text lines. We further provide an evaluation methodology, including an evaluation server and a testset with non-public annotations. We provide a state-of-the-art text recognition baseline build on convolutional and recurrent neural networks trained with Connectionist Temporal Classification loss. This baseline achieves 2 %, 23 % and 73 % word error rates on easy, medium and hard parts of the dataset, respectively, confirming that the dataset is challenging. The presented dataset will enable future development and evaluation of document analysis for low-quality images. It is primarily intended for line-level text recognition, and can be further used for line localization, layout analysis, image restoration and text binarization.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/DG18P02OVV055" target="_blank" >DG18P02OVV055: Pokročilá extrakce a rozpoznávání obsahu tištěných a rukou psaných digitalizátů pro zvýšení jejich přístupnosti a využitelnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Conference on Document Analysis and Recognition, ICDAR
ISBN
978-1-7281-3014-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1352-1357
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Sydney
Místo konání akce
Sydney, Australia
Datum konání akce
20. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—