Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic document quality assessment software module

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APR32697" target="_blank" >RIV/00216305:26230/19:PR32697 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://github.com/DCGM/pero-quality" target="_blank" >https://github.com/DCGM/pero-quality</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic document quality assessment software module

  • Popis výsledku v původním jazyce

    This tool provides automatic quality assessment of digitalized documents. The estimated quality scores closely correspond to readability by humans. The tool provides quality score heatmaps and an overall quality score for a whole document page. The module computes local perceptual quality scores based on confidence scores from Optical Character Recognition (OCR) or directly by a fast convolutional neural network. This module is build on top of OCR developed in project PERO (pero-ocr). The text recognition works in multiple stages. Firstly, locations and heights of text lines are determined using a fully convolutional neural network (modified U-NET). The individual text lines are processed by covolutional-recurrent networks trained using CTC loss. These networks provide confidences of recognized characters which are locally mapped to perceptual scores. The mapping to perceptual scores was calibrated on a large dataset of readability ratings by human readers.

  • Název v anglickém jazyce

    Automatic document quality assessment software module

  • Popis výsledku anglicky

    This tool provides automatic quality assessment of digitalized documents. The estimated quality scores closely correspond to readability by humans. The tool provides quality score heatmaps and an overall quality score for a whole document page. The module computes local perceptual quality scores based on confidence scores from Optical Character Recognition (OCR) or directly by a fast convolutional neural network. This module is build on top of OCR developed in project PERO (pero-ocr). The text recognition works in multiple stages. Firstly, locations and heights of text lines are determined using a fully convolutional neural network (modified U-NET). The individual text lines are processed by covolutional-recurrent networks trained using CTC loss. These networks provide confidences of recognized characters which are locally mapped to perceptual scores. The mapping to perceptual scores was calibrated on a large dataset of readability ratings by human readers.

Klasifikace

  • Druh

    R - Software

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/DG18P02OVV055" target="_blank" >DG18P02OVV055: Pokročilá extrakce a rozpoznávání obsahu tištěných a rukou psaných digitalizátů pro zvýšení jejich přístupnosti a využitelnosti</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Interní identifikační kód produktu

    PERO-QUALITY

  • Technické parametry

    Využití na základě volné a bezplatné open-source licence.

  • Ekonomické parametry

    Jedná se o modul pro integraci do digitalizačních linek a digitalizačního software. Komerční uplatnění je možné v rámci poskytování doplňkových služeb a konzultací.

  • IČO vlastníka výsledku

  • Název vlastníka

    Fakulta informačních technologií