Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Overview of FungiCLEF 2024: Revisiting Fungi Species Recognition Beyond 0-1 Cost

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972936" target="_blank" >RIV/49777513:23520/24:43972936 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ceur-ws.org/Vol-3740" target="_blank" >https://ceur-ws.org/Vol-3740</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Overview of FungiCLEF 2024: Revisiting Fungi Species Recognition Beyond 0-1 Cost

  • Popis výsledku v původním jazyce

    The third edition of the fungi recognition challenge, FungiCLEF 2024, organized within LifeCLEF, advances the field of mushroom species identification using computer vision and machine learning. Building on the Danish Fungi 2020 dataset and incorporating new data from the CzechFungi app, FungiCLEF 2024 challenges participants to recognize fungi species from images and metadata, focusing on efficient inference and minimalization of edible and poisonous species confusion. The strict limits on computational complexity ensure that the resulting solutions are practical for use in real-world settings with limited computational resources. The competition attracted seven teams, with five outperforming the provided baseline, which was based on the pre-trained EfficientNet-B1 model. This overview paper provides (i) a comprehensive description of the challenge and provided baseline method, (ii) detailed characteristics of the dataset and task specifications, (iii) an examination of the methods employed by contestants, and (iv) a discussion of the competition outcomes. The results highlight incremental advancements in fungi recognition, showcasing innovative approaches and techniques that push the limits of previous work. © 2024 Copyright for this paper by its authors.

  • Název v anglickém jazyce

    Overview of FungiCLEF 2024: Revisiting Fungi Species Recognition Beyond 0-1 Cost

  • Popis výsledku anglicky

    The third edition of the fungi recognition challenge, FungiCLEF 2024, organized within LifeCLEF, advances the field of mushroom species identification using computer vision and machine learning. Building on the Danish Fungi 2020 dataset and incorporating new data from the CzechFungi app, FungiCLEF 2024 challenges participants to recognize fungi species from images and metadata, focusing on efficient inference and minimalization of edible and poisonous species confusion. The strict limits on computational complexity ensure that the resulting solutions are practical for use in real-world settings with limited computational resources. The competition attracted seven teams, with five outperforming the provided baseline, which was based on the pre-trained EfficientNet-B1 model. This overview paper provides (i) a comprehensive description of the challenge and provided baseline method, (ii) detailed characteristics of the dataset and task specifications, (iii) an examination of the methods employed by contestants, and (iv) a discussion of the competition outcomes. The results highlight incremental advancements in fungi recognition, showcasing innovative approaches and techniques that push the limits of previous work. © 2024 Copyright for this paper by its authors.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    CEUR Workshop Proceedings

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1958-1965

  • Název nakladatele

    CEUR-WS

  • Místo vydání

    neuveden

  • Místo konání akce

    Grenoble, France

  • Datum konání akce

    9. 9. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku