Overview of LifeCLEF 2024: Challenges on Species Distribution Prediction and Identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973170" target="_blank" >RIV/49777513:23520/24:43973170 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-71908-0_9" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-71908-0_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-71908-0_9" target="_blank" >10.1007/978-3-031-71908-0_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Overview of LifeCLEF 2024: Challenges on Species Distribution Prediction and Identification
Popis výsledku v původním jazyce
Biodiversity monitoring using machine learning and AI-based approaches is becoming increasingly popular. It allows for providing detailed information on species distribution and ecosystem health at a large scale and contributes to informed decision-making on environmental protection. Species identification based on images and sounds, in particular, is invaluable for facilitating biodiversity monitoring efforts and enabling prompt conservation actions to protect threatened and endangered species. The multiplicity of methods developed, however, makes it important to evaluate their performance on realistic datasets and using standardized evaluation protocols. The LifeCLEF lab has been setting up such evaluations since 2011, encouraging machine learning researchers to work on this topic and promoting the adoption of the technologies developed by stakeholders. The 2024 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i) BirdCLEF: bird call identification in soundscapes, (ii) FungiCLEF: revisiting fungi species recognition beyond 0-1 cost, (iii) GeoLifeCLEF: remote sensing based prediction of species, (iv) PlantCLEF: Multi-species identification in vegetation plot images, and (v) SnakeCLEF: revisiting snake species identification in medically important scenarios. This paper overviews the motivation, methodology, and main outcomes of those five challenges.
Název v anglickém jazyce
Overview of LifeCLEF 2024: Challenges on Species Distribution Prediction and Identification
Popis výsledku anglicky
Biodiversity monitoring using machine learning and AI-based approaches is becoming increasingly popular. It allows for providing detailed information on species distribution and ecosystem health at a large scale and contributes to informed decision-making on environmental protection. Species identification based on images and sounds, in particular, is invaluable for facilitating biodiversity monitoring efforts and enabling prompt conservation actions to protect threatened and endangered species. The multiplicity of methods developed, however, makes it important to evaluate their performance on realistic datasets and using standardized evaluation protocols. The LifeCLEF lab has been setting up such evaluations since 2011, encouraging machine learning researchers to work on this topic and promoting the adoption of the technologies developed by stakeholders. The 2024 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i) BirdCLEF: bird call identification in soundscapes, (ii) FungiCLEF: revisiting fungi species recognition beyond 0-1 cost, (iii) GeoLifeCLEF: remote sensing based prediction of species, (iv) PlantCLEF: Multi-species identification in vegetation plot images, and (v) SnakeCLEF: revisiting snake species identification in medically important scenarios. This paper overviews the motivation, methodology, and main outcomes of those five challenges.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Experimental IR Meets Multilinguality, Multimodality, and Interaction. Lecture Notes in Computer Science
ISBN
978-3-031-71907-3
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
25
Strana od-do
183-207
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Grenoble
Datum konání akce
9. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001336411000009