Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sentences vs Phrases in Neural Speech Synthesis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973179" target="_blank" >RIV/49777513:23520/24:43973179 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-70566-3_4" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70566-3_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70566-3_4" target="_blank" >10.1007/978-3-031-70566-3_4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sentences vs Phrases in Neural Speech Synthesis

  • Popis výsledku v původním jazyce

    The neural network-based TTS models are usually trained and inferred on the whole sentences, or, in general, on longer chunks of speech. However, these may negatively affect the responsiveness of the TTS system in cases when latency should be kept as small as possible. We present experiments using smaller chunk lengths, namely phrases, and their impact on speech quality when various chunk length combinations are used for training and inference in the VITS synthesizer.

  • Název v anglickém jazyce

    Sentences vs Phrases in Neural Speech Synthesis

  • Popis výsledku anglicky

    The neural network-based TTS models are usually trained and inferred on the whole sentences, or, in general, on longer chunks of speech. However, these may negatively affect the responsiveness of the TTS system in cases when latency should be kept as small as possible. We present experiments using smaller chunk lengths, namely phrases, and their impact on speech quality when various chunk length combinations are used for training and inference in the VITS synthesizer.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-27800S" target="_blank" >GA22-27800S: Využití vícemodálních Transformerů pro přirozenější hlasový dialog</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Text, Speech, and Dialogue. Lecture Notes in Computer Science

  • ISBN

    978-3-031-70565-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    10

  • Strana od-do

    36-45

  • Název nakladatele

    Springer International Publishing

  • Místo vydání

    Cham

  • Místo konání akce

    Brno, Czech Republic

  • Datum konání akce

    9. 9. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001307848400004