CVPR 2024 - FGVC11 Workshop
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973935" target="_blank" >RIV/49777513:23520/24:43973935 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CVPR 2024 - FGVC11 Workshop
Popis výsledku v původním jazyce
It may be tempting to think that image classification is a solved problem. However, one only needs to look at the poor performance of existing techniques in domains with limited training data and highly similar categories to see that this is not the case. In particular, fine-grained categorization, e.g., the precise differentiation between similar plant or animal species, disease of the retina, architectural styles, etc., is an extremely challenging problem, pushing the limits of both human and machine performance. In these domains, expert knowledge is typically required, and the question that must be addressed is how we can develop artificial systems that can efficiently discriminate between large numbers of highly similar visual concepts.The 11th Workshop on Fine-Grained Visual Categorization (FGVC11) will explore topics related to supervised learning, self-supervised learning, semi-supervised learning, vision and language, matching, localization, domain adaptation, transfer learning, few-shot learning, machine teaching, multimodal learning (e.g., audio and video), 3D-vision, crowd-sourcing, image captioning and generation, out-of-distribution detection, anomaly detection, open-set recognition, human-in-the-loop learning, and taxonomic prediction, all through the lens of fine-grained understanding. Hence, the relevant topics are neither restricted to vision nor categorization.
Název v anglickém jazyce
CVPR 2024 - FGVC11 Workshop
Popis výsledku anglicky
It may be tempting to think that image classification is a solved problem. However, one only needs to look at the poor performance of existing techniques in domains with limited training data and highly similar categories to see that this is not the case. In particular, fine-grained categorization, e.g., the precise differentiation between similar plant or animal species, disease of the retina, architectural styles, etc., is an extremely challenging problem, pushing the limits of both human and machine performance. In these domains, expert knowledge is typically required, and the question that must be addressed is how we can develop artificial systems that can efficiently discriminate between large numbers of highly similar visual concepts.The 11th Workshop on Fine-Grained Visual Categorization (FGVC11) will explore topics related to supervised learning, self-supervised learning, semi-supervised learning, vision and language, matching, localization, domain adaptation, transfer learning, few-shot learning, machine teaching, multimodal learning (e.g., audio and video), 3D-vision, crowd-sourcing, image captioning and generation, out-of-distribution detection, anomaly detection, open-set recognition, human-in-the-loop learning, and taxonomic prediction, all through the lens of fine-grained understanding. Hence, the relevant topics are neither restricted to vision nor categorization.
Klasifikace
Druh
W - Uspořádání workshopu
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/SS05010008" target="_blank" >SS05010008: Detekce, identifikace a monitoring živočichů pokročilými metodami počítačového vidění</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Místo konání akce
Seattle
Stát konání akce
US - Spojené státy americké
Datum zahájení akce
—
Datum ukončení akce
—
Celkový počet účastníků
100
Počet zahraničních účastníků
99
Typ akce podle státní přísl. účastníků
WRD - Celosvětová akce