Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

CVPR 2024 - FGVC11 Workshop

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973935" target="_blank" >RIV/49777513:23520/24:43973935 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    CVPR 2024 - FGVC11 Workshop

  • Popis výsledku v původním jazyce

    It may be tempting to think that image classification is a solved problem. However, one only needs to look at the poor performance of existing techniques in domains with limited training data and highly similar categories to see that this is not the case. In particular, fine-grained categorization, e.g., the precise differentiation between similar plant or animal species, disease of the retina, architectural styles, etc., is an extremely challenging problem, pushing the limits of both human and machine performance. In these domains, expert knowledge is typically required, and the question that must be addressed is how we can develop artificial systems that can efficiently discriminate between large numbers of highly similar visual concepts.The 11th Workshop on Fine-Grained Visual Categorization (FGVC11) will explore topics related to supervised learning, self-supervised learning, semi-supervised learning, vision and language, matching, localization, domain adaptation, transfer learning, few-shot learning, machine teaching, multimodal learning (e.g., audio and video), 3D-vision, crowd-sourcing, image captioning and generation, out-of-distribution detection, anomaly detection, open-set recognition, human-in-the-loop learning, and taxonomic prediction, all through the lens of fine-grained understanding. Hence, the relevant topics are neither restricted to vision nor categorization.

  • Název v anglickém jazyce

    CVPR 2024 - FGVC11 Workshop

  • Popis výsledku anglicky

    It may be tempting to think that image classification is a solved problem. However, one only needs to look at the poor performance of existing techniques in domains with limited training data and highly similar categories to see that this is not the case. In particular, fine-grained categorization, e.g., the precise differentiation between similar plant or animal species, disease of the retina, architectural styles, etc., is an extremely challenging problem, pushing the limits of both human and machine performance. In these domains, expert knowledge is typically required, and the question that must be addressed is how we can develop artificial systems that can efficiently discriminate between large numbers of highly similar visual concepts.The 11th Workshop on Fine-Grained Visual Categorization (FGVC11) will explore topics related to supervised learning, self-supervised learning, semi-supervised learning, vision and language, matching, localization, domain adaptation, transfer learning, few-shot learning, machine teaching, multimodal learning (e.g., audio and video), 3D-vision, crowd-sourcing, image captioning and generation, out-of-distribution detection, anomaly detection, open-set recognition, human-in-the-loop learning, and taxonomic prediction, all through the lens of fine-grained understanding. Hence, the relevant topics are neither restricted to vision nor categorization.

Klasifikace

  • Druh

    W - Uspořádání workshopu

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/SS05010008" target="_blank" >SS05010008: Detekce, identifikace a monitoring živočichů pokročilými metodami počítačového vidění</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Místo konání akce

    Seattle

  • Stát konání akce

    US - Spojené státy americké

  • Datum zahájení akce

  • Datum ukončení akce

  • Celkový počet účastníků

    100

  • Počet zahraničních účastníků

    99

  • Typ akce podle státní přísl. účastníků

    WRD - Celosvětová akce