Engle-Vosko GGA Approach Within DFT Investigations of the Optoelectronic Structure of the Metal Chalcogenide Semiconductor CsAgGa2Se4
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F16%3A43928684" target="_blank" >RIV/49777513:23640/16:43928684 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11664-015-4192-8" target="_blank" >http://dx.doi.org/10.1007/s11664-015-4192-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11664-015-4192-8" target="_blank" >10.1007/s11664-015-4192-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Engle-Vosko GGA Approach Within DFT Investigations of the Optoelectronic Structure of the Metal Chalcogenide Semiconductor CsAgGa2Se4
Popis výsledku v původním jazyce
Metal chalcogenide semiconductors are playing a significant role in the development of materials for energy and nanotechnology applications. First principle calculations were applied on CsAgGa2Se4 to investigate its optoelectronic structure and bonding characteristics, using full potential linear augmented plane wave (FP-LAPW) method within the frame work of generalized gradient approximations (GGA) and Engle-Vosko GGA functionals (EV-GGA). The band structure from EV-GGA shows that the valence band maximum (VBM) and conduction band minimum (CBM) are situated at I" with a band gap value of 2.15 eV. A mixture of orbitals from Ag 4p6/4d10, Se 3d10, Ga 4p1, Se 4p4 and Ga 4s2 states are playing a primary role to lead to a semiconducting character of the present chalcogenide. The charge density iso-surface shows a strong covalent bonding between Ag-Se and Ga-Se atoms. The imaginary part of dielectric constant reveals that the threshold (first optical critical point) energy of dielectric function occur 2.15 eV. It is obvious that with a direct large band gap and large absorption coefficient, CsAgGa2Se4 might be considered as potential material for photovoltaic applications.
Název v anglickém jazyce
Engle-Vosko GGA Approach Within DFT Investigations of the Optoelectronic Structure of the Metal Chalcogenide Semiconductor CsAgGa2Se4
Popis výsledku anglicky
Metal chalcogenide semiconductors are playing a significant role in the development of materials for energy and nanotechnology applications. First principle calculations were applied on CsAgGa2Se4 to investigate its optoelectronic structure and bonding characteristics, using full potential linear augmented plane wave (FP-LAPW) method within the frame work of generalized gradient approximations (GGA) and Engle-Vosko GGA functionals (EV-GGA). The band structure from EV-GGA shows that the valence band maximum (VBM) and conduction band minimum (CBM) are situated at I" with a band gap value of 2.15 eV. A mixture of orbitals from Ag 4p6/4d10, Se 3d10, Ga 4p1, Se 4p4 and Ga 4s2 states are playing a primary role to lead to a semiconducting character of the present chalcogenide. The charge density iso-surface shows a strong covalent bonding between Ag-Se and Ga-Se atoms. The imaginary part of dielectric constant reveals that the threshold (first optical critical point) energy of dielectric function occur 2.15 eV. It is obvious that with a direct large band gap and large absorption coefficient, CsAgGa2Se4 might be considered as potential material for photovoltaic applications.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of ELECTRONIC MATERIALS
ISSN
0361-5235
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
746-754
Kód UT WoS článku
000367467800089
EID výsledku v databázi Scopus
—