Unraveling deformation mechanisms around FCC and BCC nanocontacts through slip trace and pileup topography analyses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F17%3A43931746" target="_blank" >RIV/49777513:23640/17:43931746 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.actamat.2016.11.067" target="_blank" >http://dx.doi.org/10.1016/j.actamat.2016.11.067</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.actamat.2016.11.067" target="_blank" >10.1016/j.actamat.2016.11.067</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unraveling deformation mechanisms around FCC and BCC nanocontacts through slip trace and pileup topography analyses
Popis výsledku v původním jazyce
Nanocontact loadings offer the potential to investigate crystal plasticity from surface slip trace emissions and distinct pileup patterns where individual atomic terraces arrange into hillocks and symmetric rosettes. Our MD simulations in FCC Cu and Al nanocontacts show development of specific dislocation interception, cross-slip and twin annihilation mechanisms producing traces along characteristic <011> and <112> directions. Although planar slip is stabilized through subsurface dislocation interactions, highly serrated slip traces always predominate in Al due to the advent of cross-slip of the surfaced population of screw dislocations, leading to intricate hillock morphologies. We show that the distinct wavy hillocks and terraces in BCC Ta and Fe nanocontacts are due to dislocation kinking and outward spreading of surfaced screw segments, which originate from dislocation loops induced by twin annihilation and twin-mediated nucleation processes in the subsurface. While increasing temperature favors terrace formation in BCCs, surface decorations are enhanced in FCCs limiting hillock definition. It is found that material bulging against the indenter-tip is a distinctive feature in nanocontact plasticity associated with intermittent defect bursts. Bulging is enhanced by recurrent slip traces introduced throughout the contact surface, as in the case of the strongly linear defect networks in FCC Al, and by specific twin arrangements at the vicinity of BCC nanocontacts. Defect patterning also produces surface depressions in the form of vertexes around FCC nanoimprints. While the rosette morphologies are consistent with those assessed experimentally in greater FCC and BCC imprints, topographical pileup due to extensive bulging becomes prominent at the nanoscale.
Název v anglickém jazyce
Unraveling deformation mechanisms around FCC and BCC nanocontacts through slip trace and pileup topography analyses
Popis výsledku anglicky
Nanocontact loadings offer the potential to investigate crystal plasticity from surface slip trace emissions and distinct pileup patterns where individual atomic terraces arrange into hillocks and symmetric rosettes. Our MD simulations in FCC Cu and Al nanocontacts show development of specific dislocation interception, cross-slip and twin annihilation mechanisms producing traces along characteristic <011> and <112> directions. Although planar slip is stabilized through subsurface dislocation interactions, highly serrated slip traces always predominate in Al due to the advent of cross-slip of the surfaced population of screw dislocations, leading to intricate hillock morphologies. We show that the distinct wavy hillocks and terraces in BCC Ta and Fe nanocontacts are due to dislocation kinking and outward spreading of surfaced screw segments, which originate from dislocation loops induced by twin annihilation and twin-mediated nucleation processes in the subsurface. While increasing temperature favors terrace formation in BCCs, surface decorations are enhanced in FCCs limiting hillock definition. It is found that material bulging against the indenter-tip is a distinctive feature in nanocontact plasticity associated with intermittent defect bursts. Bulging is enhanced by recurrent slip traces introduced throughout the contact surface, as in the case of the strongly linear defect networks in FCC Al, and by specific twin arrangements at the vicinity of BCC nanocontacts. Defect patterning also produces surface depressions in the form of vertexes around FCC nanoimprints. While the rosette morphologies are consistent with those assessed experimentally in greater FCC and BCC imprints, topographical pileup due to extensive bulging becomes prominent at the nanoscale.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACTA MATERIALIA
ISSN
1359-6454
e-ISSN
—
Svazek periodika
125
Číslo periodika v rámci svazku
15 February 2017
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
431-441
Kód UT WoS článku
000394201500043
EID výsledku v databázi Scopus
2-s2.0-85006819087