Understanding imprint formation, plastic instabilities and hardness evolutions in FCC, BCC and HCP metal surfaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F21%3A00544732" target="_blank" >RIV/61388998:_____/21:00544732 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23640/21:43962528
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1359645421005024" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1359645421005024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.actamat.2021.117122" target="_blank" >10.1016/j.actamat.2021.117122</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Understanding imprint formation, plastic instabilities and hardness evolutions in FCC, BCC and HCP metal surfaces
Popis výsledku v původním jazyce
Nanoindentation experiments in metal surfaces are characterized by the onset of plastic instabilities along with the development of permanent nanoimprints and dense defect networks. This investigation concerns massive molecular dynamics simulations of nanoindentation experiments in FCC, BCC and HCP metals using blunted (spherical) tips of realistic size, and the detailed comparison of the results with experimental measurements. Our findings shed light on the defect processes which dictate the contact resistance to plastic deformation, the development of a transitional stage with abrupt plastic instabilities, and the evolution towards a self-similar steady-state characterized by the plateauing hardness at constant dislocation density . The onset of permanent nanoimprints is governed by stacking fault and nanotwin interlocking, the buildup of nanostructured regions and crystallites throughout the imprint, the cross-slip and cross-kinking of surfaced screw dislocations, and the occurrence of defect remobilization events within the plastic zone. As a result of these mechanisms, the ratio between the hardness and the Young's modulus becomes higher in BCC Ta and Fe, followed by FCC Al, HCP Mg and large stacking fault width FCC Ni and Cu. Finally, when nanoimprint formation is correlated with the uniaxial response of the indented minuscule material volume, the hardness to yield strength ratio, , varies from 7 to 10, which largely exceeds the continuum plasticity bound of 2.8. Our results have general implications to the understanding of indentation size-effects, where the onset of extreme nanoscale hardness values is associated with the occurrence of unique imprint-forming processes under large strain gradients.
Název v anglickém jazyce
Understanding imprint formation, plastic instabilities and hardness evolutions in FCC, BCC and HCP metal surfaces
Popis výsledku anglicky
Nanoindentation experiments in metal surfaces are characterized by the onset of plastic instabilities along with the development of permanent nanoimprints and dense defect networks. This investigation concerns massive molecular dynamics simulations of nanoindentation experiments in FCC, BCC and HCP metals using blunted (spherical) tips of realistic size, and the detailed comparison of the results with experimental measurements. Our findings shed light on the defect processes which dictate the contact resistance to plastic deformation, the development of a transitional stage with abrupt plastic instabilities, and the evolution towards a self-similar steady-state characterized by the plateauing hardness at constant dislocation density . The onset of permanent nanoimprints is governed by stacking fault and nanotwin interlocking, the buildup of nanostructured regions and crystallites throughout the imprint, the cross-slip and cross-kinking of surfaced screw dislocations, and the occurrence of defect remobilization events within the plastic zone. As a result of these mechanisms, the ratio between the hardness and the Young's modulus becomes higher in BCC Ta and Fe, followed by FCC Al, HCP Mg and large stacking fault width FCC Ni and Cu. Finally, when nanoimprint formation is correlated with the uniaxial response of the indented minuscule material volume, the hardness to yield strength ratio, , varies from 7 to 10, which largely exceeds the continuum plasticity bound of 2.8. Our results have general implications to the understanding of indentation size-effects, where the onset of extreme nanoscale hardness values is associated with the occurrence of unique imprint-forming processes under large strain gradients.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Materialia
ISSN
1359-6454
e-ISSN
1873-2453
Svazek periodika
217
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
117122
Kód UT WoS článku
000691327100002
EID výsledku v databázi Scopus
2-s2.0-85111040252