Development of a constitutive model of soft tissues for FE analyses using a bottom-up approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F18%3A43955562" target="_blank" >RIV/49777513:23640/18:43955562 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23810/18:43955562
Výsledek na webu
<a href="http://hdl.handle.net/11025/34917" target="_blank" >http://hdl.handle.net/11025/34917</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24132/acm.2018.330" target="_blank" >10.24132/acm.2018.330</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Development of a constitutive model of soft tissues for FE analyses using a bottom-up approach
Popis výsledku v původním jazyce
This paper presents the development of a two-scale anisotropic hyperelastic material model whose microstructure is motivated by the arrangement of soft tissues. In a bottom-up approach, we start at the microscale, identifying the components that are relevant for our model. These components are represented by simplified mechanical elements, such as linear springs and incompressible volumes. The next step is to use the concept of the representative volume element connecting the micro- and macroscales. Introducing principal material directions, the notion of invariants and pseudo-invariants is employed to derive a formula for the strain energy function. In fact, two hyperelastic models are proposed. In the simplified one, the microstructure is formed of a network of linear springs. In the second one, an incompressible volume is added to the representation of the microstructure. This results in the model’s having a nonlinear response, with the strain energy function arising as a solution to a minimization problem. The properties of the strain energy function and the influence of anisotropy are demonstrated on a simple tension test and a simple shear test. Applications of the proposed model to the description of prestressed materials, non-affine deformations, and real tissue modelling are presented.
Název v anglickém jazyce
Development of a constitutive model of soft tissues for FE analyses using a bottom-up approach
Popis výsledku anglicky
This paper presents the development of a two-scale anisotropic hyperelastic material model whose microstructure is motivated by the arrangement of soft tissues. In a bottom-up approach, we start at the microscale, identifying the components that are relevant for our model. These components are represented by simplified mechanical elements, such as linear springs and incompressible volumes. The next step is to use the concept of the representative volume element connecting the micro- and macroscales. Introducing principal material directions, the notion of invariants and pseudo-invariants is employed to derive a formula for the strain energy function. In fact, two hyperelastic models are proposed. In the simplified one, the microstructure is formed of a network of linear springs. In the second one, an incompressible volume is added to the representation of the microstructure. This results in the model’s having a nonlinear response, with the strain energy function arising as a solution to a minimization problem. The properties of the strain energy function and the influence of anisotropy are demonstrated on a simple tension test and a simple shear test. Applications of the proposed model to the description of prestressed materials, non-affine deformations, and real tissue modelling are presented.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0038" target="_blank" >EE2.3.30.0038: Nová excelence lidských zdrojů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied and Computational Mechanics
ISSN
1802-680X
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
18
Strana od-do
175-192
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85067059019