Investigation on the parameter dependency of the perforation process of graphite based lithium-ion battery electrodes using ultrashort laser pulses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F22%3A43967551" target="_blank" >RIV/49777513:23640/22:43967551 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.2351/7.0000757" target="_blank" >https://doi.org/10.2351/7.0000757</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2351/7.0000757" target="_blank" >10.2351/7.0000757</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigation on the parameter dependency of the perforation process of graphite based lithium-ion battery electrodes using ultrashort laser pulses
Popis výsledku v původním jazyce
Perforation of lithium-ion battery electrodes has recently become an increasing interest in science and industry. Perforated electrodes have shown improved electrochemical properties compared to conventional, nonperforated electrodes. It has been demonstrated that through perforation, the fast-charging capability and the lifetime of these batteries can be significantly improved. The electrodes for lithium-ion batteries consist of a copper foil onto which the electrode material is applied as a porous layer. This layer is mainly composed of active material particles, which are bound together by a binder phase. Here, synthetic graphite was used as an active material. Up to now, it has been shown that an advantageous and precise perforation geometry can be produced by ultrashort laser pulse ablation. Since the ablation volumes during perforation of the porous electrode material with ultrashort laser pulses are unusually high compared to solids, this work investigates the parameter dependency on the ablation mechanisms in detail. For this purpose, in particular, single-pulse ablation was investigated with respect to the ablation thresholds at different pulse durations. The pulse durations were varied over a large range from 400 fs to 20 ps. By varying the number of pulses per perforation up to 50 and the single-pulse energy up to 45 μJ, it could be shown that a homogeneous ablation down to the conductor foil through the 63 μm thick active material layer can be achieved.
Název v anglickém jazyce
Investigation on the parameter dependency of the perforation process of graphite based lithium-ion battery electrodes using ultrashort laser pulses
Popis výsledku anglicky
Perforation of lithium-ion battery electrodes has recently become an increasing interest in science and industry. Perforated electrodes have shown improved electrochemical properties compared to conventional, nonperforated electrodes. It has been demonstrated that through perforation, the fast-charging capability and the lifetime of these batteries can be significantly improved. The electrodes for lithium-ion batteries consist of a copper foil onto which the electrode material is applied as a porous layer. This layer is mainly composed of active material particles, which are bound together by a binder phase. Here, synthetic graphite was used as an active material. Up to now, it has been shown that an advantageous and precise perforation geometry can be produced by ultrashort laser pulse ablation. Since the ablation volumes during perforation of the porous electrode material with ultrashort laser pulses are unusually high compared to solids, this work investigates the parameter dependency on the ablation mechanisms in detail. For this purpose, in particular, single-pulse ablation was investigated with respect to the ablation thresholds at different pulse durations. The pulse durations were varied over a large range from 400 fs to 20 ps. By varying the number of pulses per perforation up to 50 and the single-pulse energy up to 45 μJ, it could be shown that a homogeneous ablation down to the conductor foil through the 63 μm thick active material layer can be achieved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF LASER APPLICATIONS
ISSN
1042-346X
e-ISSN
1938-1387
Svazek periodika
34
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
nestrankovano
Kód UT WoS článku
000852569100001
EID výsledku v databázi Scopus
2-s2.0-85137978392