Thermographic Data Processing and Feature Extraction Approaches for Machine Learning-Based Defect Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F23%3A43971033" target="_blank" >RIV/49777513:23640/23:43971033 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/engproc2023051005" target="_blank" >https://doi.org/10.3390/engproc2023051005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/engproc2023051005" target="_blank" >10.3390/engproc2023051005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermographic Data Processing and Feature Extraction Approaches for Machine Learning-Based Defect Detection
Popis výsledku v původním jazyce
Infrared thermography is a non-destructive testing method used to detect defects in materials and structures. Machine learning algorithms have been applied to thermographic data to automate the defect detection process. Data preparation and feature extraction are crucial factors affecting ML model results, especially in thermographic data analysis. This study focuses on automating the detection of impact damage in carbon fiber-reinforced polymer materials using flash-pulse thermography and ML algorithms. Various machine learning models and data pre-processing techniques were evaluated for their effectiveness in detecting and locating impact damage. The results demonstrated that the combination of the K-nearest neighbors model with the differential absolute contrast data processing method achieved the highest balanced accuracy. Other combinations, such as Gaussian support vector machine model with raw data and K-nearest neighbor with thermographic signal reconstruction derivative data, also exhibited promising performances.
Název v anglickém jazyce
Thermographic Data Processing and Feature Extraction Approaches for Machine Learning-Based Defect Detection
Popis výsledku anglicky
Infrared thermography is a non-destructive testing method used to detect defects in materials and structures. Machine learning algorithms have been applied to thermographic data to automate the defect detection process. Data preparation and feature extraction are crucial factors affecting ML model results, especially in thermographic data analysis. This study focuses on automating the detection of impact damage in carbon fiber-reinforced polymer materials using flash-pulse thermography and ML algorithms. Various machine learning models and data pre-processing techniques were evaluated for their effectiveness in detecting and locating impact damage. The results demonstrated that the combination of the K-nearest neighbors model with the differential absolute contrast data processing method achieved the highest balanced accuracy. Other combinations, such as Gaussian support vector machine model with raw data and K-nearest neighbor with thermographic signal reconstruction derivative data, also exhibited promising performances.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering Proceedings
ISBN
—
ISSN
2673-4591
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
MDPI
Místo vydání
Basilej
Místo konání akce
Itálie
Datum konání akce
10. 9. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—