Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detection of gunshot residue by flash-pulse and long-pulse infrared thermography

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F24%3A43972419" target="_blank" >RIV/49777513:23640/24:43972419 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.infrared.2024.105366" target="_blank" >https://doi.org/10.1016/j.infrared.2024.105366</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.infrared.2024.105366" target="_blank" >10.1016/j.infrared.2024.105366</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detection of gunshot residue by flash-pulse and long-pulse infrared thermography

  • Popis výsledku v původním jazyce

    Detection of gunshot residues (GSR) in a bullet hole area is one of the forensic investigations aiding in the reconstruction of crime scenes. Traditionally, chromogenic methods based on chemical exposure or microscopic/spectroscopic methods are used for this purpose. In this study, we explore the applicability of active excitation infrared thermography methods for GSR detection in the bullet hole area on fabric samples. A standard 9mm full metal jacket ammunition with a nickel-plated shell and natural cotton fabric samples were used for experiments in this study. The applicability of active thermography methods based on two different light/heat excitation sources to detect the GSR was investigated. Flash-pulse and long-pulse thermography were compared through an experimental investigation. We evaluated the effectiveness of various thermographic data processing methods, including background subtraction, temperature derivative analysis, Fourier transform phase analysis, principal component analysis, and higher-order statistics for GSR evaluation. Our findings demonstrate that flash-pulse thermography and kurtosis analysis yield the highest contrast-to-noise ratio (CNR) and produce sharp, clear images of GSR, making it the optimal method for thermographic GSR detection. Our study indicates that even though the GSR particles are tiny, they can produce sufficient contrast to be detected by the thermographic methods if appropriate experimental and post-processing procedures are used. Thus, these methods could complement GSR detection as they are non- destructive and offer rapid inspection.

  • Název v anglickém jazyce

    Detection of gunshot residue by flash-pulse and long-pulse infrared thermography

  • Popis výsledku anglicky

    Detection of gunshot residues (GSR) in a bullet hole area is one of the forensic investigations aiding in the reconstruction of crime scenes. Traditionally, chromogenic methods based on chemical exposure or microscopic/spectroscopic methods are used for this purpose. In this study, we explore the applicability of active excitation infrared thermography methods for GSR detection in the bullet hole area on fabric samples. A standard 9mm full metal jacket ammunition with a nickel-plated shell and natural cotton fabric samples were used for experiments in this study. The applicability of active thermography methods based on two different light/heat excitation sources to detect the GSR was investigated. Flash-pulse and long-pulse thermography were compared through an experimental investigation. We evaluated the effectiveness of various thermographic data processing methods, including background subtraction, temperature derivative analysis, Fourier transform phase analysis, principal component analysis, and higher-order statistics for GSR evaluation. Our findings demonstrate that flash-pulse thermography and kurtosis analysis yield the highest contrast-to-noise ratio (CNR) and produce sharp, clear images of GSR, making it the optimal method for thermographic GSR detection. Our study indicates that even though the GSR particles are tiny, they can produce sufficient contrast to be detected by the thermographic methods if appropriate experimental and post-processing procedures are used. Thus, these methods could complement GSR detection as they are non- destructive and offer rapid inspection.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/VK01010037" target="_blank" >VK01010037: Metodika rychlé bezkontaktní a nedestruktivní detekce zplodin výstřelu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Infrared Physics &amp; Technology

  • ISSN

    1350-4495

  • e-ISSN

    1879-0275

  • Svazek periodika

    140

  • Číslo periodika v rámci svazku

    AUG 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    001250238800001

  • EID výsledku v databázi Scopus

    2-s2.0-85195099616