Detection of gunshot residue by flash-pulse and long-pulse infrared thermography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F24%3A43972419" target="_blank" >RIV/49777513:23640/24:43972419 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.infrared.2024.105366" target="_blank" >https://doi.org/10.1016/j.infrared.2024.105366</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.infrared.2024.105366" target="_blank" >10.1016/j.infrared.2024.105366</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of gunshot residue by flash-pulse and long-pulse infrared thermography
Popis výsledku v původním jazyce
Detection of gunshot residues (GSR) in a bullet hole area is one of the forensic investigations aiding in the reconstruction of crime scenes. Traditionally, chromogenic methods based on chemical exposure or microscopic/spectroscopic methods are used for this purpose. In this study, we explore the applicability of active excitation infrared thermography methods for GSR detection in the bullet hole area on fabric samples. A standard 9mm full metal jacket ammunition with a nickel-plated shell and natural cotton fabric samples were used for experiments in this study. The applicability of active thermography methods based on two different light/heat excitation sources to detect the GSR was investigated. Flash-pulse and long-pulse thermography were compared through an experimental investigation. We evaluated the effectiveness of various thermographic data processing methods, including background subtraction, temperature derivative analysis, Fourier transform phase analysis, principal component analysis, and higher-order statistics for GSR evaluation. Our findings demonstrate that flash-pulse thermography and kurtosis analysis yield the highest contrast-to-noise ratio (CNR) and produce sharp, clear images of GSR, making it the optimal method for thermographic GSR detection. Our study indicates that even though the GSR particles are tiny, they can produce sufficient contrast to be detected by the thermographic methods if appropriate experimental and post-processing procedures are used. Thus, these methods could complement GSR detection as they are non- destructive and offer rapid inspection.
Název v anglickém jazyce
Detection of gunshot residue by flash-pulse and long-pulse infrared thermography
Popis výsledku anglicky
Detection of gunshot residues (GSR) in a bullet hole area is one of the forensic investigations aiding in the reconstruction of crime scenes. Traditionally, chromogenic methods based on chemical exposure or microscopic/spectroscopic methods are used for this purpose. In this study, we explore the applicability of active excitation infrared thermography methods for GSR detection in the bullet hole area on fabric samples. A standard 9mm full metal jacket ammunition with a nickel-plated shell and natural cotton fabric samples were used for experiments in this study. The applicability of active thermography methods based on two different light/heat excitation sources to detect the GSR was investigated. Flash-pulse and long-pulse thermography were compared through an experimental investigation. We evaluated the effectiveness of various thermographic data processing methods, including background subtraction, temperature derivative analysis, Fourier transform phase analysis, principal component analysis, and higher-order statistics for GSR evaluation. Our findings demonstrate that flash-pulse thermography and kurtosis analysis yield the highest contrast-to-noise ratio (CNR) and produce sharp, clear images of GSR, making it the optimal method for thermographic GSR detection. Our study indicates that even though the GSR particles are tiny, they can produce sufficient contrast to be detected by the thermographic methods if appropriate experimental and post-processing procedures are used. Thus, these methods could complement GSR detection as they are non- destructive and offer rapid inspection.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/VK01010037" target="_blank" >VK01010037: Metodika rychlé bezkontaktní a nedestruktivní detekce zplodin výstřelu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Infrared Physics & Technology
ISSN
1350-4495
e-ISSN
1879-0275
Svazek periodika
140
Číslo periodika v rámci svazku
AUG 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
001250238800001
EID výsledku v databázi Scopus
2-s2.0-85195099616