Enhancing generalizability of a machine learning model for infrared thermographic defect detection by using 3d numerical modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F24%3A43972967" target="_blank" >RIV/49777513:23640/24:43972967 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3221/IGF-ESIS.70.10" target="_blank" >https://doi.org/10.3221/IGF-ESIS.70.10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3221/IGF-ESIS.70.10" target="_blank" >10.3221/IGF-ESIS.70.10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing generalizability of a machine learning model for infrared thermographic defect detection by using 3d numerical modeling
Popis výsledku v původním jazyce
he paper describes the implementation of 3D numerical simulation in machine learning models used in infrared thermographic nondestructive testing. The enhancement of generalizability of such models emerges as a decisive factor for producing trust-worthy test results. First, it is demonstrated that the models trained on datasets with fixed parameters yield limited defect detection capabilities. The concept of training datasets, which include subtle variations in material thickness, thermal conductivity, as well as various combinations of material density and heat capacity, provides the best learning results and a noticeable ability to identify defects in all test datasets. Second, the model robustness in respect to noise is explored to demonstrate its ability to withstand additive and multiplicative random noise. Third, potentials of some known techniques of thermographic data processing, such as Thermographic Signal Reconstruction, Fast Fourier Transform and Temperature Contrast, are examined. In particular, the use of the Temperature Contrast data ensured sensitivity (True Positive Rate) better than 98% across all test datasets
Název v anglickém jazyce
Enhancing generalizability of a machine learning model for infrared thermographic defect detection by using 3d numerical modeling
Popis výsledku anglicky
he paper describes the implementation of 3D numerical simulation in machine learning models used in infrared thermographic nondestructive testing. The enhancement of generalizability of such models emerges as a decisive factor for producing trust-worthy test results. First, it is demonstrated that the models trained on datasets with fixed parameters yield limited defect detection capabilities. The concept of training datasets, which include subtle variations in material thickness, thermal conductivity, as well as various combinations of material density and heat capacity, provides the best learning results and a noticeable ability to identify defects in all test datasets. Second, the model robustness in respect to noise is explored to demonstrate its ability to withstand additive and multiplicative random noise. Third, potentials of some known techniques of thermographic data processing, such as Thermographic Signal Reconstruction, Fast Fourier Transform and Temperature Contrast, are examined. In particular, the use of the Temperature Contrast data ensured sensitivity (True Positive Rate) better than 98% across all test datasets
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frattura ed Integrita Strutturale
ISSN
1971-8993
e-ISSN
1971-8993
Svazek periodika
18
Číslo periodika v rámci svazku
70
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
15
Strana od-do
177-191
Kód UT WoS článku
001310355000001
EID výsledku v databázi Scopus
2-s2.0-85205589117