Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12220%2F21%3A43902752" target="_blank" >RIV/60076658:12220/21:43902752 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs11042-021-11556-x" target="_blank" >https://link.springer.com/article/10.1007%2Fs11042-021-11556-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-021-11556-x" target="_blank" >10.1007/s11042-021-11556-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm
Popis výsledku v původním jazyce
In order to improve the accuracy of rolling bearing fault diagnosis in mechanical equipment, a new fault diagnosis method based on back propagation neural network optimized by cuckoo search algorithm is proposed. This method use the global search ability of the cuckoo search algorithm to constantly search for the best weights and thresholds, and then give it to the back propagation neural network. In this paper, wavelet packet decomposition is used for feature extraction of vibration signals. The energy values of different frequency bands are obtained through wavelet packet decomposition, and they are input as feature vectors into optimized back propagation neural network to identify different fault types of rolling bearings. Through the three sets of simulation comparison experiments of Matlab, the experimental results show that, Under the same conditions, compared with the other five models, the proposed back propagation neural network optimized by cuckoo search algorithm has the least number of training iterations and the highest diagnostic accuracy rate. And in the complex classification experiment with the same fault location but different bearing diameters, the fault recognition correct rate of the back propagation neural network optimized by cuckoo search algorithm is 96.25%.
Název v anglickém jazyce
Fault diagnosis of rolling bearing based on back propagation neural network optimized by cuckoo search algorithm
Popis výsledku anglicky
In order to improve the accuracy of rolling bearing fault diagnosis in mechanical equipment, a new fault diagnosis method based on back propagation neural network optimized by cuckoo search algorithm is proposed. This method use the global search ability of the cuckoo search algorithm to constantly search for the best weights and thresholds, and then give it to the back propagation neural network. In this paper, wavelet packet decomposition is used for feature extraction of vibration signals. The energy values of different frequency bands are obtained through wavelet packet decomposition, and they are input as feature vectors into optimized back propagation neural network to identify different fault types of rolling bearings. Through the three sets of simulation comparison experiments of Matlab, the experimental results show that, Under the same conditions, compared with the other five models, the proposed back propagation neural network optimized by cuckoo search algorithm has the least number of training iterations and the highest diagnostic accuracy rate. And in the complex classification experiment with the same fault location but different bearing diameters, the fault recognition correct rate of the back propagation neural network optimized by cuckoo search algorithm is 96.25%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Multimedia Tools and Applications
ISSN
1380-7501
e-ISSN
—
Svazek periodika
81
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
1567-1587
Kód UT WoS článku
000704942100001
EID výsledku v databázi Scopus
—