Comparison of remote sensing and plant trait-based modelling to predict ecosystem services in subalpine grasslands
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F14%3A43887749" target="_blank" >RIV/60076658:12310/14:43887749 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985939:_____/14:00482866 RIV/86652079:_____/14:00482866
Výsledek na webu
<a href="http://www.esajournals.org/doi/full/10.1890/ES13-00393.1" target="_blank" >http://www.esajournals.org/doi/full/10.1890/ES13-00393.1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1890/ES13-00393.1" target="_blank" >10.1890/ES13-00393.1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of remote sensing and plant trait-based modelling to predict ecosystem services in subalpine grasslands
Popis výsledku v původním jazyce
There is a growing demand for spatially explicit assessment of multiple ecosystem services (ES) and remote sensing (RS) can provide valuable data to meet this challenge. In this study, located in the Central French Alps, we used high spatial and spectralresolution RS images to assess multiple ES based on underpinning ecosystem properties (EP) of subalpine grasslands. We estimated five EP (green biomass, litter mass, crude protein content, species diversity and soil carbon content) from RS data using empirical RS methods and maps of ES were calculated as simple linear combinations of EP. Additionally, the RS-based results were compared with results of a plant trait-based statistical modelling approach that predicted EP and ES from land use, abiotic andplant trait data (modelling approach). The comparison between the RS and the modelling approaches showed that RS-based results provided better insight into the fine-grained spatial distribution of EP and thereby ES, whereas the modelling
Název v anglickém jazyce
Comparison of remote sensing and plant trait-based modelling to predict ecosystem services in subalpine grasslands
Popis výsledku anglicky
There is a growing demand for spatially explicit assessment of multiple ecosystem services (ES) and remote sensing (RS) can provide valuable data to meet this challenge. In this study, located in the Central French Alps, we used high spatial and spectralresolution RS images to assess multiple ES based on underpinning ecosystem properties (EP) of subalpine grasslands. We estimated five EP (green biomass, litter mass, crude protein content, species diversity and soil carbon content) from RS data using empirical RS methods and maps of ES were calculated as simple linear combinations of EP. Additionally, the RS-based results were compared with results of a plant trait-based statistical modelling approach that predicted EP and ES from land use, abiotic andplant trait data (modelling approach). The comparison between the RS and the modelling approaches showed that RS-based results provided better insight into the fine-grained spatial distribution of EP and thereby ES, whereas the modelling
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EH - Ekologie – společenstva
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ECOSPHERE
ISSN
2150-8925
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
—
Kód UT WoS článku
000345096900007
EID výsledku v databázi Scopus
—