Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A generalizable normalization for assessing plant functional diversity metrics across scales from remote sensing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907129" target="_blank" >RIV/60076658:12310/23:43907129 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.14163" target="_blank" >https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.14163</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/2041-210X.14163" target="_blank" >10.1111/2041-210X.14163</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A generalizable normalization for assessing plant functional diversity metrics across scales from remote sensing

  • Popis výsledku v původním jazyce

    1. Remote sensing (RS) increasingly seeks to produce global-coverage maps of plant functional diversity (PFD) across scales. PFD can be quantified with metrics assessing field or RS data dissimilarity. However, their comparison suffers from the lack of normalization approaches that (1) correct for differences in the number and correlation of traits and spectral variables and (2) do not require comparing all the available samples to estimate the maximum trait&apos;s dissimilarity (unfeasible in RS). 2. We propose a generalizable normalization (GN) based on the maximum potential dissimilarity for the traits and spectral data considered and compare it to more traditional approaches (e.g. the maximum dissimilarity within datasets). To do so, we simulated plant communities with radiative transfer models and compared RS-based diversity measurements across spatial scales (a-and ss-diversity components). Specifically, we assessed the capability of different normalization approaches (GN, local, none) to provide PFD estimates comparable between (1) RS and plant traits and (2) estimates from different RS missions. 3. Unlike the other approaches, GN provides diversity component estimates that are directly comparable between field data and RS missions with different spectral configurations by removing the effect of differences in the number of traits or bands and the maximum dissimilarity across datasets. 4. Therefore, GN enables the separated analysis of RS images from different sensors to produce comparable global-coverage cartography. We suggest GN is necessary to validate RS approaches and develop interpretable maps of PFD using different RS missions.

  • Název v anglickém jazyce

    A generalizable normalization for assessing plant functional diversity metrics across scales from remote sensing

  • Popis výsledku anglicky

    1. Remote sensing (RS) increasingly seeks to produce global-coverage maps of plant functional diversity (PFD) across scales. PFD can be quantified with metrics assessing field or RS data dissimilarity. However, their comparison suffers from the lack of normalization approaches that (1) correct for differences in the number and correlation of traits and spectral variables and (2) do not require comparing all the available samples to estimate the maximum trait&apos;s dissimilarity (unfeasible in RS). 2. We propose a generalizable normalization (GN) based on the maximum potential dissimilarity for the traits and spectral data considered and compare it to more traditional approaches (e.g. the maximum dissimilarity within datasets). To do so, we simulated plant communities with radiative transfer models and compared RS-based diversity measurements across spatial scales (a-and ss-diversity components). Specifically, we assessed the capability of different normalization approaches (GN, local, none) to provide PFD estimates comparable between (1) RS and plant traits and (2) estimates from different RS missions. 3. Unlike the other approaches, GN provides diversity component estimates that are directly comparable between field data and RS missions with different spectral configurations by removing the effect of differences in the number of traits or bands and the maximum dissimilarity across datasets. 4. Therefore, GN enables the separated analysis of RS images from different sensors to produce comparable global-coverage cartography. We suggest GN is necessary to validate RS approaches and develop interpretable maps of PFD using different RS missions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Methods in Ecology and Evolution

  • ISSN

    2041-210X

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    2123-2136

  • Kód UT WoS článku

    001011196700001

  • EID výsledku v databázi Scopus

    2-s2.0-85161985885