A generalizable normalization for assessing plant functional diversity metrics across scales from remote sensing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907129" target="_blank" >RIV/60076658:12310/23:43907129 - isvavai.cz</a>
Výsledek na webu
<a href="https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.14163" target="_blank" >https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.14163</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/2041-210X.14163" target="_blank" >10.1111/2041-210X.14163</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A generalizable normalization for assessing plant functional diversity metrics across scales from remote sensing
Popis výsledku v původním jazyce
1. Remote sensing (RS) increasingly seeks to produce global-coverage maps of plant functional diversity (PFD) across scales. PFD can be quantified with metrics assessing field or RS data dissimilarity. However, their comparison suffers from the lack of normalization approaches that (1) correct for differences in the number and correlation of traits and spectral variables and (2) do not require comparing all the available samples to estimate the maximum trait's dissimilarity (unfeasible in RS). 2. We propose a generalizable normalization (GN) based on the maximum potential dissimilarity for the traits and spectral data considered and compare it to more traditional approaches (e.g. the maximum dissimilarity within datasets). To do so, we simulated plant communities with radiative transfer models and compared RS-based diversity measurements across spatial scales (a-and ss-diversity components). Specifically, we assessed the capability of different normalization approaches (GN, local, none) to provide PFD estimates comparable between (1) RS and plant traits and (2) estimates from different RS missions. 3. Unlike the other approaches, GN provides diversity component estimates that are directly comparable between field data and RS missions with different spectral configurations by removing the effect of differences in the number of traits or bands and the maximum dissimilarity across datasets. 4. Therefore, GN enables the separated analysis of RS images from different sensors to produce comparable global-coverage cartography. We suggest GN is necessary to validate RS approaches and develop interpretable maps of PFD using different RS missions.
Název v anglickém jazyce
A generalizable normalization for assessing plant functional diversity metrics across scales from remote sensing
Popis výsledku anglicky
1. Remote sensing (RS) increasingly seeks to produce global-coverage maps of plant functional diversity (PFD) across scales. PFD can be quantified with metrics assessing field or RS data dissimilarity. However, their comparison suffers from the lack of normalization approaches that (1) correct for differences in the number and correlation of traits and spectral variables and (2) do not require comparing all the available samples to estimate the maximum trait's dissimilarity (unfeasible in RS). 2. We propose a generalizable normalization (GN) based on the maximum potential dissimilarity for the traits and spectral data considered and compare it to more traditional approaches (e.g. the maximum dissimilarity within datasets). To do so, we simulated plant communities with radiative transfer models and compared RS-based diversity measurements across spatial scales (a-and ss-diversity components). Specifically, we assessed the capability of different normalization approaches (GN, local, none) to provide PFD estimates comparable between (1) RS and plant traits and (2) estimates from different RS missions. 3. Unlike the other approaches, GN provides diversity component estimates that are directly comparable between field data and RS missions with different spectral configurations by removing the effect of differences in the number of traits or bands and the maximum dissimilarity across datasets. 4. Therefore, GN enables the separated analysis of RS images from different sensors to produce comparable global-coverage cartography. We suggest GN is necessary to validate RS approaches and develop interpretable maps of PFD using different RS missions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Methods in Ecology and Evolution
ISSN
2041-210X
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
2123-2136
Kód UT WoS článku
001011196700001
EID výsledku v databázi Scopus
2-s2.0-85161985885