Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid Protein

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F19%3A43900389" target="_blank" >RIV/60076658:12310/19:43900389 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.rsc.org/en/content/articlelanding/2019/CP/C9CP03574E#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2019/CP/C9CP03574E#!divAbstract</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c9cp03574e" target="_blank" >10.1039/c9cp03574e</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid Protein

  • Popis výsledku v původním jazyce

    Carotenoids in photosynthetic proteins carry out the dual function of harvesting light and defending against photo-damage by quenching excess energy. The latter involves the low-lying, dark, excited state labelled S-1. Here &quot;dark&quot; means optically-forbidden, a property that is often attributed to molecular symmetry, which leads to speculation that its optical properties may be strongly-perturbed by structural distortions. This has been both explicitly and implicitly proposed as an important feature of photo-protective energy quenching. Here we present a theoretical analysis of the relationship between structural distortions and S-1 optical properties. We outline how S-1 is dark not because of overall geometric symmetry but because of a topological symmetry related to bond length alternation in the conjugated backbone. Taking the carotenoid echinenone as an example and using a combination of molecular dynamics, quantum chemistry, and the theory of spectral lineshapes, we show that distortions that break this symmetry are extremely stiff. They are therefore absent in solution and only marginally present in even a very highly-distorted protein binding pocket such as in the Orange Carotenoid Protein (OCP). S-1 remains resolutely optically-forbidden despite any breaking of bulk molecular symmetry by the protein environment. However, rotations of partially conjugated end-rings can result in fine tuning of the S-1 transition density which may exert some influence on interactions with neighbouring chromophores.

  • Název v anglickém jazyce

    How carotenoid distortions may determine optical properties: lessons from the Orange Carotenoid Protein

  • Popis výsledku anglicky

    Carotenoids in photosynthetic proteins carry out the dual function of harvesting light and defending against photo-damage by quenching excess energy. The latter involves the low-lying, dark, excited state labelled S-1. Here &quot;dark&quot; means optically-forbidden, a property that is often attributed to molecular symmetry, which leads to speculation that its optical properties may be strongly-perturbed by structural distortions. This has been both explicitly and implicitly proposed as an important feature of photo-protective energy quenching. Here we present a theoretical analysis of the relationship between structural distortions and S-1 optical properties. We outline how S-1 is dark not because of overall geometric symmetry but because of a topological symmetry related to bond length alternation in the conjugated backbone. Taking the carotenoid echinenone as an example and using a combination of molecular dynamics, quantum chemistry, and the theory of spectral lineshapes, we show that distortions that break this symmetry are extremely stiff. They are therefore absent in solution and only marginally present in even a very highly-distorted protein binding pocket such as in the Orange Carotenoid Protein (OCP). S-1 remains resolutely optically-forbidden despite any breaking of bulk molecular symmetry by the protein environment. However, rotations of partially conjugated end-rings can result in fine tuning of the S-1 transition density which may exert some influence on interactions with neighbouring chromophores.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-21631S" target="_blank" >GA18-21631S: Ultrarychlá časová spektroskopie jako nástroj pro studium vztahu mezi strukturou a funkcí karotenoproteinů u sinic</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Chemistry Chemical Physics

  • ISSN

    1463-9076

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    41

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    23187-23197

  • Kód UT WoS článku

    000492992600051

  • EID výsledku v databázi Scopus

    2-s2.0-85074117820