Trivial Excitation Energy Transfer to Carotenoids Is an Unlikely Mechanism for Non-photochemical Quenching in LHCII
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43904802" target="_blank" >RIV/60076658:12310/22:43904802 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fpls.2021.797373/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fpls.2021.797373/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fpls.2021.797373" target="_blank" >10.3389/fpls.2021.797373</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trivial Excitation Energy Transfer to Carotenoids Is an Unlikely Mechanism for Non-photochemical Quenching in LHCII
Popis výsledku v původním jazyce
Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favors excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S-1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S-1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD) trajectories about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely its linear absorption (LA), transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII free energy surface. We show that trivial, Coulomb-mediated energy transfer to S-1 is an unlikely quenching mechanism, with pigment movements insufficiently pronounced to switch the system between quenched and unquenched states. Modulation of S-1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is possibly an artifact of quantum chemical over-estimation of S-1 oscillator strength and the real mechanism likely involves short-range interaction and/or non-trivial inter-molecular states.
Název v anglickém jazyce
Trivial Excitation Energy Transfer to Carotenoids Is an Unlikely Mechanism for Non-photochemical Quenching in LHCII
Popis výsledku anglicky
Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favors excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S-1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S-1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD) trajectories about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely its linear absorption (LA), transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII free energy surface. We show that trivial, Coulomb-mediated energy transfer to S-1 is an unlikely quenching mechanism, with pigment movements insufficiently pronounced to switch the system between quenched and unquenched states. Modulation of S-1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is possibly an artifact of quantum chemical over-estimation of S-1 oscillator strength and the real mechanism likely involves short-range interaction and/or non-trivial inter-molecular states.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28323X" target="_blank" >GX19-28323X: Vztah mezi strukturou a funkcí karotenoidů: Nové cesty k řešení nezodpovězených otázek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Plant Science
ISSN
1664-462X
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
JAN 13 2022
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
nestrankovano
Kód UT WoS článku
000759114300001
EID výsledku v databázi Scopus
2-s2.0-85124016607