Phase-Sensitive Vibrational SFG Spectra from Simple Classical Force Field Molecular Dynamics Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901133" target="_blank" >RIV/60076658:12310/20:43901133 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03576" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03576</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.0c03576" target="_blank" >10.1021/acs.jpcc.0c03576</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Phase-Sensitive Vibrational SFG Spectra from Simple Classical Force Field Molecular Dynamics Simulations
Popis výsledku v původním jazyce
We show that phase-sensitive vibrational sum frequency generation (SFG) spectra of solid/water and air/water interfaces, neutral and charged, can be successfully predicted using classical molecular dynamics (CMD) simulations in combination with simple nonpolarizable force fields (FFs). This can be achieved when employing velocity-velocity autocorrelation functions weighted by parameterized Raman and atomic polar tensors for the computation of the SFG. This procedure avoids computing polarizability tensors and dipole moments using either costly ab initio molecular dynamics (AIMD) simulations or CMD simulations with more complex and computationally demanding FFs. Such a methodology paves the way to a broad usage and computationally low-cost theoretical SFG spectroscopy, as even flexible nonpolarizable water models and common FFs for inorganic surfaces can provide good predictions of the SFG spectra, in rather good qualitative agreement with AIMD and/or experiments. The strongly reduced computational cost in our approach opens the possibility to study larger systems for long periods of time, for example, allowing a detailed characterization of the electric double-layer formation at interfaces with "environmentally relevant" ionic concentrations (mM), extracting fingerprints by theoretical CMD-SFG spectroscopy.
Název v anglickém jazyce
Phase-Sensitive Vibrational SFG Spectra from Simple Classical Force Field Molecular Dynamics Simulations
Popis výsledku anglicky
We show that phase-sensitive vibrational sum frequency generation (SFG) spectra of solid/water and air/water interfaces, neutral and charged, can be successfully predicted using classical molecular dynamics (CMD) simulations in combination with simple nonpolarizable force fields (FFs). This can be achieved when employing velocity-velocity autocorrelation functions weighted by parameterized Raman and atomic polar tensors for the computation of the SFG. This procedure avoids computing polarizability tensors and dipole moments using either costly ab initio molecular dynamics (AIMD) simulations or CMD simulations with more complex and computationally demanding FFs. Such a methodology paves the way to a broad usage and computationally low-cost theoretical SFG spectroscopy, as even flexible nonpolarizable water models and common FFs for inorganic surfaces can provide good predictions of the SFG spectra, in rather good qualitative agreement with AIMD and/or experiments. The strongly reduced computational cost in our approach opens the possibility to study larger systems for long periods of time, for example, allowing a detailed characterization of the electric double-layer formation at interfaces with "environmentally relevant" ionic concentrations (mM), extracting fingerprints by theoretical CMD-SFG spectroscopy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-10734S" target="_blank" >GA17-10734S: Molekulární popis jevů v elektrické dvojvrstvě - predikce a interpretace experimentálních dat počítačovými simulacemi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
—
Svazek periodika
124
Číslo periodika v rámci svazku
28
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
15253-15263
Kód UT WoS článku
000551543800033
EID výsledku v databázi Scopus
2-s2.0-85089263723