Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901405" target="_blank" >RIV/60076658:12310/20:43901405 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02686" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02686</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpclett.0c02686" target="_blank" >10.1021/acs.jpclett.0c02686</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins
Popis výsledku v původním jazyce
Multi-heme cytochromes (MHCs) are fascinating proteins used by bacterial organisms to shuttle electrons within, between, and out of their cells. When placed in solid-state electronic junctions, MHCs support temperature-independent currents over several nanometers that are 3 orders of magnitude higher compared to other redox proteins of similar size. To gain molecular-level insight into their astonishingly high conductivities, we combine experimental photoemission spectroscopy with DFT+S current-voltage calculations on a representative Gold-MHC-Gold junction. We find that conduction across the dry, 3 nm long protein occurs via off-resonant coherent tunneling, mediated by a large number of protein valence-band orbitals that are strongly delocalized over heme and protein residues. This picture is profoundly different from the electron hopping mechanism induced electrochemically or photochemically under aqueous conditions. Our results imply that the current output in solid-state junctions can be even further increased in resonance, for example, by applying a gate voltage, thus allowing a quantum jump for next-generation bionanoelectronic devices.
Název v anglickém jazyce
Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins
Popis výsledku anglicky
Multi-heme cytochromes (MHCs) are fascinating proteins used by bacterial organisms to shuttle electrons within, between, and out of their cells. When placed in solid-state electronic junctions, MHCs support temperature-independent currents over several nanometers that are 3 orders of magnitude higher compared to other redox proteins of similar size. To gain molecular-level insight into their astonishingly high conductivities, we combine experimental photoemission spectroscopy with DFT+S current-voltage calculations on a representative Gold-MHC-Gold junction. We find that conduction across the dry, 3 nm long protein occurs via off-resonant coherent tunneling, mediated by a large number of protein valence-band orbitals that are strongly delocalized over heme and protein residues. This picture is profoundly different from the electron hopping mechanism induced electrochemically or photochemically under aqueous conditions. Our results imply that the current output in solid-state junctions can be even further increased in resonance, for example, by applying a gate voltage, thus allowing a quantum jump for next-generation bionanoelectronic devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF PHYSICAL CHEMISTRY LETTERS
ISSN
1948-7185
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
9766-9774
Kód UT WoS článku
000592959100034
EID výsledku v databázi Scopus
2-s2.0-85096457054