Tunneling-to-Hopping Transition in Multiheme Cytochrome Bioelectronic Junctions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907580" target="_blank" >RIV/60076658:12310/23:43907580 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03361" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03361</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpclett.2c03361" target="_blank" >10.1021/acs.jpclett.2c03361</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tunneling-to-Hopping Transition in Multiheme Cytochrome Bioelectronic Junctions
Popis výsledku v původním jazyce
Multiheme cytochromes (MHCs) have attracted much interest for use in nanobioelectronic junctions due to their high electronic conductances. Recent measurements on dry MHC junctions suggested that a coherent tunneling mechanism is operative over surprisingly long long distances (> 3 nm), which challenges our understanding of coherent transport phenomena. Here we show that this is due to (i) a low exponential distance decay constant for coherent conduction in MHCs (beta = 0.2 angstrom(-1)) and (ii) a large density of protein electronic states which prolongs the coherent tunneling regime to distances that exceed those in molecular wires made of small molecules. Incoherent hopping conduction is uncompetitive due to the large energy level offset at the protein-electrode interface. Removing this offset, e.g., by gating, we predict that the transport mechanism crosses over from coherent tunneling to incoherent hopping at a protein size of similar to 7 nm, thus enabling transport on the micrometer scale with a shallow polynomial (similar to 1/r) distance decay.
Název v anglickém jazyce
Tunneling-to-Hopping Transition in Multiheme Cytochrome Bioelectronic Junctions
Popis výsledku anglicky
Multiheme cytochromes (MHCs) have attracted much interest for use in nanobioelectronic junctions due to their high electronic conductances. Recent measurements on dry MHC junctions suggested that a coherent tunneling mechanism is operative over surprisingly long long distances (> 3 nm), which challenges our understanding of coherent transport phenomena. Here we show that this is due to (i) a low exponential distance decay constant for coherent conduction in MHCs (beta = 0.2 angstrom(-1)) and (ii) a large density of protein electronic states which prolongs the coherent tunneling regime to distances that exceed those in molecular wires made of small molecules. Incoherent hopping conduction is uncompetitive due to the large energy level offset at the protein-electrode interface. Removing this offset, e.g., by gating, we predict that the transport mechanism crosses over from coherent tunneling to incoherent hopping at a protein size of similar to 7 nm, thus enabling transport on the micrometer scale with a shallow polynomial (similar to 1/r) distance decay.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-02067Y" target="_blank" >GJ20-02067Y: Přenos elektrického náboje na nabitých heterogenních rozhraních s redoxními metaloproteiny</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF PHYSICAL CHEMISTRY LETTERS
ISSN
1948-7185
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
445-452
Kód UT WoS článku
000924930400001
EID výsledku v databázi Scopus
2-s2.0-85146190277