Structural, Solvent, and Temperature Effects on Protein Junction Conductance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F24%3A43908494" target="_blank" >RIV/60076658:12310/24:43908494 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02230" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02230</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpclett.4c02230" target="_blank" >10.1021/acs.jpclett.4c02230</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structural, Solvent, and Temperature Effects on Protein Junction Conductance
Popis výsledku v původním jazyce
Cytochrome b 562 is a small redox-active heme protein that has served as an important model system for understanding biological electron transfer processes. Here, we present a comprehensive theoretical study of electron transport mechanisms in protein-metal junctions incorporating cytochrome b 562 using a multi-scale computational approach. Employing molecular dynamics (MD) simulations, we generated junction geometries for both vacuum-dried and solvated conditions, with the protein covalently bound to gold contacts in various configurations. Coherent tunneling, described by the Landauer-Buttiker formalism within the density functional theory (DFT) framework, is compared to the incoherent hopping charge transport mechanism captured by the semi-classical Marcus theory. The tunneling was identified as the dominant mechanism explaining the experimental data measured on the cytochrome b 562 junctions, exhibiting exponential yet very shallow distance dependence. While the structural orientations and protein contacts with the electrodes influence the junction conductance significantly, the solvation effects are relatively small, affecting the electronic properties mostly via the adsorption arrangement. On the other hand, the considerable temperature dependence of the conductance was found strong only for hopping, while the tunneling current magnitudes remain practically unaffected and are a good indicator of the coherent mechanism in this case.
Název v anglickém jazyce
Structural, Solvent, and Temperature Effects on Protein Junction Conductance
Popis výsledku anglicky
Cytochrome b 562 is a small redox-active heme protein that has served as an important model system for understanding biological electron transfer processes. Here, we present a comprehensive theoretical study of electron transport mechanisms in protein-metal junctions incorporating cytochrome b 562 using a multi-scale computational approach. Employing molecular dynamics (MD) simulations, we generated junction geometries for both vacuum-dried and solvated conditions, with the protein covalently bound to gold contacts in various configurations. Coherent tunneling, described by the Landauer-Buttiker formalism within the density functional theory (DFT) framework, is compared to the incoherent hopping charge transport mechanism captured by the semi-classical Marcus theory. The tunneling was identified as the dominant mechanism explaining the experimental data measured on the cytochrome b 562 junctions, exhibiting exponential yet very shallow distance dependence. While the structural orientations and protein contacts with the electrodes influence the junction conductance significantly, the solvation effects are relatively small, affecting the electronic properties mostly via the adsorption arrangement. On the other hand, the considerable temperature dependence of the conductance was found strong only for hopping, while the tunneling current magnitudes remain practically unaffected and are a good indicator of the coherent mechanism in this case.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF PHYSICAL CHEMISTRY LETTERS
ISSN
1948-7185
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
46
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
11608-11614
Kód UT WoS článku
001353288800001
EID výsledku v databázi Scopus
2-s2.0-85209110458