Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improve performance and robustness of knowledge-based FUZZY LOGIC habitat models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F21%3A43903320" target="_blank" >RIV/60076658:12310/21:43903320 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60077344:_____/21:00546048

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S136481522100181X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S136481522100181X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.envsoft.2021.105138" target="_blank" >10.1016/j.envsoft.2021.105138</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improve performance and robustness of knowledge-based FUZZY LOGIC habitat models

  • Popis výsledku v původním jazyce

    Previous criticisms of knowledge-based fuzzy logic modelling have identified some of its limitations and revealed weaknesses regarding the development of fuzzy sets, the integration of expert knowledge, and the outcomes of different defuzzification processes. We show here how expert disagreement and fuzzy logic mechanisms associated with the rule development and combinations can positively or adversely affect model performance and the interpretation of results. We highlight how expert disagreement can induce uncertainty into model outputs when defining fuzzy sets and selecting a defuzzification method. We present a framework to account for sources of error and bias and improve the performance and robustness of knowledge-based fuzzy logic models. We recommend to 1) provide clear/unambiguous instructions on model development, processes and objectives, including the definition of input variables and fuzzy sets, 2) incorporate the disagreement among experts into the analysis, 3) increase the use of short rules and the OR operator to reduce complexity, and 4) improve model performance and robustness by using narrow fuzzy sets for extreme values of input variables to expand the universe of discourse adequately. Our framework is focused on fuzzy logic models but can be applied to all knowledge-based models that require expert judgment, including expert systems, decision trees and (fuzzy) Bayesian inference systems.

  • Název v anglickém jazyce

    Improve performance and robustness of knowledge-based FUZZY LOGIC habitat models

  • Popis výsledku anglicky

    Previous criticisms of knowledge-based fuzzy logic modelling have identified some of its limitations and revealed weaknesses regarding the development of fuzzy sets, the integration of expert knowledge, and the outcomes of different defuzzification processes. We show here how expert disagreement and fuzzy logic mechanisms associated with the rule development and combinations can positively or adversely affect model performance and the interpretation of results. We highlight how expert disagreement can induce uncertainty into model outputs when defining fuzzy sets and selecting a defuzzification method. We present a framework to account for sources of error and bias and improve the performance and robustness of knowledge-based fuzzy logic models. We recommend to 1) provide clear/unambiguous instructions on model development, processes and objectives, including the definition of input variables and fuzzy sets, 2) incorporate the disagreement among experts into the analysis, 3) increase the use of short rules and the OR operator to reduce complexity, and 4) improve model performance and robustness by using narrow fuzzy sets for extreme values of input variables to expand the universe of discourse adequately. Our framework is focused on fuzzy logic models but can be applied to all knowledge-based models that require expert judgment, including expert systems, decision trees and (fuzzy) Bayesian inference systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Environmental Modelling and Software

  • ISSN

    1364-8152

  • e-ISSN

  • Svazek periodika

    144

  • Číslo periodika v rámci svazku

    OCT 2021

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000696669300003

  • EID výsledku v databázi Scopus

    2-s2.0-85111935779