Improve performance and robustness of knowledge-based FUZZY LOGIC habitat models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F21%3A43903320" target="_blank" >RIV/60076658:12310/21:43903320 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60077344:_____/21:00546048
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S136481522100181X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S136481522100181X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.envsoft.2021.105138" target="_blank" >10.1016/j.envsoft.2021.105138</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improve performance and robustness of knowledge-based FUZZY LOGIC habitat models
Popis výsledku v původním jazyce
Previous criticisms of knowledge-based fuzzy logic modelling have identified some of its limitations and revealed weaknesses regarding the development of fuzzy sets, the integration of expert knowledge, and the outcomes of different defuzzification processes. We show here how expert disagreement and fuzzy logic mechanisms associated with the rule development and combinations can positively or adversely affect model performance and the interpretation of results. We highlight how expert disagreement can induce uncertainty into model outputs when defining fuzzy sets and selecting a defuzzification method. We present a framework to account for sources of error and bias and improve the performance and robustness of knowledge-based fuzzy logic models. We recommend to 1) provide clear/unambiguous instructions on model development, processes and objectives, including the definition of input variables and fuzzy sets, 2) incorporate the disagreement among experts into the analysis, 3) increase the use of short rules and the OR operator to reduce complexity, and 4) improve model performance and robustness by using narrow fuzzy sets for extreme values of input variables to expand the universe of discourse adequately. Our framework is focused on fuzzy logic models but can be applied to all knowledge-based models that require expert judgment, including expert systems, decision trees and (fuzzy) Bayesian inference systems.
Název v anglickém jazyce
Improve performance and robustness of knowledge-based FUZZY LOGIC habitat models
Popis výsledku anglicky
Previous criticisms of knowledge-based fuzzy logic modelling have identified some of its limitations and revealed weaknesses regarding the development of fuzzy sets, the integration of expert knowledge, and the outcomes of different defuzzification processes. We show here how expert disagreement and fuzzy logic mechanisms associated with the rule development and combinations can positively or adversely affect model performance and the interpretation of results. We highlight how expert disagreement can induce uncertainty into model outputs when defining fuzzy sets and selecting a defuzzification method. We present a framework to account for sources of error and bias and improve the performance and robustness of knowledge-based fuzzy logic models. We recommend to 1) provide clear/unambiguous instructions on model development, processes and objectives, including the definition of input variables and fuzzy sets, 2) incorporate the disagreement among experts into the analysis, 3) increase the use of short rules and the OR operator to reduce complexity, and 4) improve model performance and robustness by using narrow fuzzy sets for extreme values of input variables to expand the universe of discourse adequately. Our framework is focused on fuzzy logic models but can be applied to all knowledge-based models that require expert judgment, including expert systems, decision trees and (fuzzy) Bayesian inference systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Modelling and Software
ISSN
1364-8152
e-ISSN
—
Svazek periodika
144
Číslo periodika v rámci svazku
OCT 2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000696669300003
EID výsledku v databázi Scopus
2-s2.0-85111935779