On the Solution of Contact Problems with Tresca Friction by the Semismooth* Newton Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43904870" target="_blank" >RIV/60076658:12310/22:43904870 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-97549-4_59" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-97549-4_59</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-97549-4_59" target="_blank" >10.1007/978-3-030-97549-4_59</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Solution of Contact Problems with Tresca Friction by the Semismooth* Newton Method
Popis výsledku v původním jazyce
An equilibrium of a linear elastic body subject to loading and satisfying the friction and contact conditions can be described by a variational inequality of the second kind and the respective discrete model attains the form of a generalized equation. To its numerical solution we apply the semismooth* Newton method by Gfrerer and Outrata (2019) in which, in contrast to most available Newton-type methods for inclusions, one approximates not only the single-valued but also the multi-valued part. This is performed on the basis of limiting (Morduchovich) coderivative. In our case of the Tresca friction, the multi-valued part amounts to the subdifferential of a convex function generated by the friction and contact conditions. The full 3D discrete problem is then reduced to the contact boundary. Implementation details of the semismooth* Newton method are provided and numerical tests demonstrate its superlinear convergence and mesh independence.
Název v anglickém jazyce
On the Solution of Contact Problems with Tresca Friction by the Semismooth* Newton Method
Popis výsledku anglicky
An equilibrium of a linear elastic body subject to loading and satisfying the friction and contact conditions can be described by a variational inequality of the second kind and the respective discrete model attains the form of a generalized equation. To its numerical solution we apply the semismooth* Newton method by Gfrerer and Outrata (2019) in which, in contrast to most available Newton-type methods for inclusions, one approximates not only the single-valued but also the multi-valued part. This is performed on the basis of limiting (Morduchovich) coderivative. In our case of the Tresca friction, the multi-valued part amounts to the subdifferential of a convex function generated by the friction and contact conditions. The full 3D discrete problem is then reduced to the contact boundary. Implementation details of the semismooth* Newton method are provided and numerical tests demonstrate its superlinear convergence and mesh independence.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021)
ISBN
978-3-030-97549-4
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
9
Strana od-do
515-523
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Sozopol
Datum konání akce
7. 6. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000893681300059