Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mechanistic insight into the RNA-stimulated ATPase activity of tick-borne encephalitis virus helicase

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43904977" target="_blank" >RIV/60076658:12310/22:43904977 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0021925822008262?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0021925822008262?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jbc.2022.102383" target="_blank" >10.1016/j.jbc.2022.102383</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mechanistic insight into the RNA-stimulated ATPase activity of tick-borne encephalitis virus helicase

  • Popis výsledku v původním jazyce

    The helicase domain of nonstructural protein 3 (NS3H) unwinds the double-stranded RNA replication intermediate in an ATP-dependent manner during the flavivirus life cycle. While the ATP hydrolysis mechanism of Dengue and Zika vi-ruses NS3H has been extensively studied, little is known in the case of the tick-borne encephalitis virus NS3H. We demon-strate that ssRNA binds with nanomolar affinity to NS3H and strongly stimulates the ATP hydrolysis cycle, whereas ssDNA binds only weakly and inhibits ATPase activity in a noncom-petitive manner. Thus, NS3H is an RNA-specific helicase, whereas DNA might act as an allosteric inhibitor. Using modeling, we explored plausible allosteric mechanisms by which ssDNA inhibits the ATPase via nonspecific binding in the vicinity of the active site and ATP repositioning. We captured several structural snapshots of key ATP hydrolysis stages using X-ray crystallography. One intermediate, in which the inorganic phosphate and ADP remained trapped inside the ATPase site after hydrolysis, suggests that inorganic phosphate release is the rate-limiting step. Using structure-guided modeling and molecular dynamics simulation, we identified putative RNA-binding residues and observed that the opening and closing of the ATP-binding site modulates RNA affinity. Site-directed mutagenesis of the conserved RNA-binding resi-dues revealed that the allosteric activation of ATPase activity is primarily communicated via an arginine residue in domain 1. In summary, we characterized conformational changes associ-ated with modulating RNA affinity and mapped allosteric communication between RNA-binding groove and ATPase site of tick-borne encephalitis virus helicase.

  • Název v anglickém jazyce

    Mechanistic insight into the RNA-stimulated ATPase activity of tick-borne encephalitis virus helicase

  • Popis výsledku anglicky

    The helicase domain of nonstructural protein 3 (NS3H) unwinds the double-stranded RNA replication intermediate in an ATP-dependent manner during the flavivirus life cycle. While the ATP hydrolysis mechanism of Dengue and Zika vi-ruses NS3H has been extensively studied, little is known in the case of the tick-borne encephalitis virus NS3H. We demon-strate that ssRNA binds with nanomolar affinity to NS3H and strongly stimulates the ATP hydrolysis cycle, whereas ssDNA binds only weakly and inhibits ATPase activity in a noncom-petitive manner. Thus, NS3H is an RNA-specific helicase, whereas DNA might act as an allosteric inhibitor. Using modeling, we explored plausible allosteric mechanisms by which ssDNA inhibits the ATPase via nonspecific binding in the vicinity of the active site and ATP repositioning. We captured several structural snapshots of key ATP hydrolysis stages using X-ray crystallography. One intermediate, in which the inorganic phosphate and ADP remained trapped inside the ATPase site after hydrolysis, suggests that inorganic phosphate release is the rate-limiting step. Using structure-guided modeling and molecular dynamics simulation, we identified putative RNA-binding residues and observed that the opening and closing of the ATP-binding site modulates RNA affinity. Site-directed mutagenesis of the conserved RNA-binding resi-dues revealed that the allosteric activation of ATPase activity is primarily communicated via an arginine residue in domain 1. In summary, we characterized conformational changes associ-ated with modulating RNA affinity and mapped allosteric communication between RNA-binding groove and ATPase site of tick-borne encephalitis virus helicase.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000441" target="_blank" >EF15_003/0000441: Mechanismy a dynamika makromolekulárních komplexů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Biological Chemistry

  • ISSN

    1083-351X

  • e-ISSN

    1083-351X

  • Svazek periodika

    298

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000867425500009

  • EID výsledku v databázi Scopus

    2-s2.0-85139211700