Learning Entropy: On Shannon vs. Machine-Learning-Based Information in Time Series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43906130" target="_blank" >RIV/60076658:12310/22:43906130 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-14343-4_38" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-14343-4_38</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-14343-4_38" target="_blank" >10.1007/978-3-031-14343-4_38</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Entropy: On Shannon vs. Machine-Learning-Based Information in Time Series
Popis výsledku v původním jazyce
The paper discusses the Learning-based information (L) and Learning Entropy (LE) in contrast to classical Shannon probabilistic Information (I) and probabilistic entropy (H). It is shown that L corresponds to the recently introduced Approximate Individual Sample-point Learning Entropy (AISLE). For data series, then, the LE should be defined as the mean value of L that is finally in proper accordance with Shannon's concept of entropy H. The distinction of L against I is explained by the real-time anomaly detection of individual time series data points (states). First, the principal distinction of the information concept of Ivs.L is demonstrated in respect to data governing law that L considers explicitly (while I does not). Second, it is shown that L has the potential to be applied on much shorter datasets than I because of the learning system being pre-trained and being able to generalize from a smaller dataset. Then, floating window trajectories of the covariance matrix norm, the trajectory of approximate variance fractal dimension, and especially the windowed Shannon Entropy trajectory are compared to LE on multichannel EEG featuring epileptic seizure. The results on real time series show that L, i.e., AISLE, can be a useful counterpart to Shannon entropy allowing us also for more detailed search of anomaly onsets (change points).
Název v anglickém jazyce
Learning Entropy: On Shannon vs. Machine-Learning-Based Information in Time Series
Popis výsledku anglicky
The paper discusses the Learning-based information (L) and Learning Entropy (LE) in contrast to classical Shannon probabilistic Information (I) and probabilistic entropy (H). It is shown that L corresponds to the recently introduced Approximate Individual Sample-point Learning Entropy (AISLE). For data series, then, the LE should be defined as the mean value of L that is finally in proper accordance with Shannon's concept of entropy H. The distinction of L against I is explained by the real-time anomaly detection of individual time series data points (states). First, the principal distinction of the information concept of Ivs.L is demonstrated in respect to data governing law that L considers explicitly (while I does not). Second, it is shown that L has the potential to be applied on much shorter datasets than I because of the learning system being pre-trained and being able to generalize from a smaller dataset. Then, floating window trajectories of the covariance matrix norm, the trajectory of approximate variance fractal dimension, and especially the windowed Shannon Entropy trajectory are compared to LE on multichannel EEG featuring epileptic seizure. The results on real time series show that L, i.e., AISLE, can be a useful counterpart to Shannon entropy allowing us also for more detailed search of anomaly onsets (change points).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022 WORKSHOPS
ISBN
978-3-031-14343-4
ISSN
1865-0929
e-ISSN
1865-0937
Počet stran výsledku
14
Strana od-do
402-415
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Vienna Univ Econ & Business
Datum konání akce
22. 8. 2022
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000870761200038