An encrypted network video stream dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907123" target="_blank" >RIV/60076658:12310/23:43907123 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352340923004535?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352340923004535?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dib.2023.109335" target="_blank" >10.1016/j.dib.2023.109335</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An encrypted network video stream dataset
Popis výsledku v původním jazyce
Most of the video content on the Internet today is distributed through online streaming platforms. To ensure user privacy, data transmissions are often encrypted using cryptographic protocols. In previous research, we first experimentally validated the idea that the amount of transmitted data belonging to a particular video stream is not constant over time or that it changes periodically and forms a specific fingerprint. Based on the knowledge of the fingerprint of a specific video stream, this video stream can be subsequently identified. Over several months of intensive work, our team has created a large dataset containing a large number of video streams that were captured by network traffic probes during their playback by end users. The video streams were deliberately chosen to fall thematically into pre-selected categories. We selected two primary platforms for streaming - PeerTube and YouTube The first platform was chosen because of the possibility of modifying any streaming parameters, while the second one was chosen because it is used by many people worldwide. Our dataset can be used to create and train machine learning models or heuristic algorithms, allowing encrypted video stream identification according to their content resp. type category or specifically.
Název v anglickém jazyce
An encrypted network video stream dataset
Popis výsledku anglicky
Most of the video content on the Internet today is distributed through online streaming platforms. To ensure user privacy, data transmissions are often encrypted using cryptographic protocols. In previous research, we first experimentally validated the idea that the amount of transmitted data belonging to a particular video stream is not constant over time or that it changes periodically and forms a specific fingerprint. Based on the knowledge of the fingerprint of a specific video stream, this video stream can be subsequently identified. Over several months of intensive work, our team has created a large dataset containing a large number of video streams that were captured by network traffic probes during their playback by end users. The video streams were deliberately chosen to fall thematically into pre-selected categories. We selected two primary platforms for streaming - PeerTube and YouTube The first platform was chosen because of the possibility of modifying any streaming parameters, while the second one was chosen because it is used by many people worldwide. Our dataset can be used to create and train machine learning models or heuristic algorithms, allowing encrypted video stream identification according to their content resp. type category or specifically.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data in Brief
ISSN
2352-3409
e-ISSN
—
Svazek periodika
49
Číslo periodika v rámci svazku
AUG 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
001027873400001
EID výsledku v databázi Scopus
2-s2.0-85163478728