Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An encrypted network video stream dataset

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907123" target="_blank" >RIV/60076658:12310/23:43907123 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352340923004535?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352340923004535?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dib.2023.109335" target="_blank" >10.1016/j.dib.2023.109335</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An encrypted network video stream dataset

  • Popis výsledku v původním jazyce

    Most of the video content on the Internet today is distributed through online streaming platforms. To ensure user privacy, data transmissions are often encrypted using cryptographic protocols. In previous research, we first experimentally validated the idea that the amount of transmitted data belonging to a particular video stream is not constant over time or that it changes periodically and forms a specific fingerprint. Based on the knowledge of the fingerprint of a specific video stream, this video stream can be subsequently identified. Over several months of intensive work, our team has created a large dataset containing a large number of video streams that were captured by network traffic probes during their playback by end users. The video streams were deliberately chosen to fall thematically into pre-selected categories. We selected two primary platforms for streaming - PeerTube and YouTube The first platform was chosen because of the possibility of modifying any streaming parameters, while the second one was chosen because it is used by many people worldwide. Our dataset can be used to create and train machine learning models or heuristic algorithms, allowing encrypted video stream identification according to their content resp. type category or specifically.

  • Název v anglickém jazyce

    An encrypted network video stream dataset

  • Popis výsledku anglicky

    Most of the video content on the Internet today is distributed through online streaming platforms. To ensure user privacy, data transmissions are often encrypted using cryptographic protocols. In previous research, we first experimentally validated the idea that the amount of transmitted data belonging to a particular video stream is not constant over time or that it changes periodically and forms a specific fingerprint. Based on the knowledge of the fingerprint of a specific video stream, this video stream can be subsequently identified. Over several months of intensive work, our team has created a large dataset containing a large number of video streams that were captured by network traffic probes during their playback by end users. The video streams were deliberately chosen to fall thematically into pre-selected categories. We selected two primary platforms for streaming - PeerTube and YouTube The first platform was chosen because of the possibility of modifying any streaming parameters, while the second one was chosen because it is used by many people worldwide. Our dataset can be used to create and train machine learning models or heuristic algorithms, allowing encrypted video stream identification according to their content resp. type category or specifically.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Data in Brief

  • ISSN

    2352-3409

  • e-ISSN

  • Svazek periodika

    49

  • Číslo periodika v rámci svazku

    AUG 2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    001027873400001

  • EID výsledku v databázi Scopus

    2-s2.0-85163478728