A novel dataset for encrypted virtual private network traffic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907124" target="_blank" >RIV/60076658:12310/23:43907124 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S235234092300063X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S235234092300063X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dib.2023.108945" target="_blank" >10.1016/j.dib.2023.108945</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel dataset for encrypted virtual private network traffic
Popis výsledku v původním jazyce
Encryption of network traffic should guarantee anonymity and prevent potential interception of information. Encrypted virtual private networks (VPNs) are designed to create special data tunnels that allow reliable transmission between networks and/or end users. However, as has been shown in a number of scientific papers, encryption alone may not be sufficient to secure data transmissions in the sense that certain information may be exposed. Our team has constructed a large dataset that contains generated encrypted network traffic data. This dataset contains a general network traffic model consisting of different types of network traffic such as web, emailing, video conferencing, video streaming, and ter-minal services. For the same network traffic model, data are measured for different scenarios, i.e., for data traffic through different types of VPNs and without VPNs. Additionally, the dataset contains the initial handshake of the VPN connec-tions. The dataset can be used by various data scientists deal-ing with the classification of encrypted network traffic and encrypted VPNs.
Název v anglickém jazyce
A novel dataset for encrypted virtual private network traffic
Popis výsledku anglicky
Encryption of network traffic should guarantee anonymity and prevent potential interception of information. Encrypted virtual private networks (VPNs) are designed to create special data tunnels that allow reliable transmission between networks and/or end users. However, as has been shown in a number of scientific papers, encryption alone may not be sufficient to secure data transmissions in the sense that certain information may be exposed. Our team has constructed a large dataset that contains generated encrypted network traffic data. This dataset contains a general network traffic model consisting of different types of network traffic such as web, emailing, video conferencing, video streaming, and ter-minal services. For the same network traffic model, data are measured for different scenarios, i.e., for data traffic through different types of VPNs and without VPNs. Additionally, the dataset contains the initial handshake of the VPN connec-tions. The dataset can be used by various data scientists deal-ing with the classification of encrypted network traffic and encrypted VPNs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data in Brief
ISSN
2352-3409
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
APR 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000947227400001
EID výsledku v databázi Scopus
2-s2.0-85150764470