Deep Learning-Based Diagnosis of Fatal Hypothermia Using Post-Mortem Computed Tomography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907330" target="_blank" >RIV/60076658:12310/23:43907330 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/23:00368941
Výsledek na webu
<a href="https://www.jstage.jst.go.jp/article/tjem/260/3/260_2023.J041/_html/-char/en" target="_blank" >https://www.jstage.jst.go.jp/article/tjem/260/3/260_2023.J041/_html/-char/en</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1620/tjem.2023.J041" target="_blank" >10.1620/tjem.2023.J041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning-Based Diagnosis of Fatal Hypothermia Using Post-Mortem Computed Tomography
Popis výsledku v původním jazyce
In forensic medicine, fatal hypothermia diagnosis is not always easy because findings are not specific, especially if traumatized. Post-mortem computed tomography (PMCT) is a useful adjunct to the cause-ofdeath diagnosis and some qualitative image character analysis, such as diffuse hyperaeration with decreased vascularity or pulmonary emphysema, have also been utilized for fatal hypothermia. However, it is challenging for inexperienced forensic pathologists to recognize the subtle differences of fatal hypothermia in PMCT images. In this study, we developed a deep learning-based diagnosis system for fatal hypothermia and explored the possibility of being an alternative diagnostic for forensic pathologists. An in-house dataset of forensic autopsy proven samples was used for the development and performance evaluation of the deep learning system. We used the area under the receiver operating characteristic curve (AUC) of the system for evaluation, and a human-expert comparable AUC value of 0.905, sensitivity of 0.948, and specificity of 0.741 were achieved. The experimental results clearly demonstrated the usefulness and feasibility of the deep learning system for fatal hypothermia diagnosis.
Název v anglickém jazyce
Deep Learning-Based Diagnosis of Fatal Hypothermia Using Post-Mortem Computed Tomography
Popis výsledku anglicky
In forensic medicine, fatal hypothermia diagnosis is not always easy because findings are not specific, especially if traumatized. Post-mortem computed tomography (PMCT) is a useful adjunct to the cause-ofdeath diagnosis and some qualitative image character analysis, such as diffuse hyperaeration with decreased vascularity or pulmonary emphysema, have also been utilized for fatal hypothermia. However, it is challenging for inexperienced forensic pathologists to recognize the subtle differences of fatal hypothermia in PMCT images. In this study, we developed a deep learning-based diagnosis system for fatal hypothermia and explored the possibility of being an alternative diagnostic for forensic pathologists. An in-house dataset of forensic autopsy proven samples was used for the development and performance evaluation of the deep learning system. We used the area under the receiver operating characteristic curve (AUC) of the system for evaluation, and a human-expert comparable AUC value of 0.905, sensitivity of 0.948, and specificity of 0.741 were achieved. The experimental results clearly demonstrated the usefulness and feasibility of the deep learning system for fatal hypothermia diagnosis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20602 - Medical laboratory technology (including laboratory samples analysis; diagnostic technologies) (Biomaterials to be 2.9 [physical characteristics of living material as related to medical implants, devices, sensors])
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
TOHOKU JOURNAL OF EXPERIMENTAL MEDICINE
ISSN
0040-8727
e-ISSN
1349-3329
Svazek periodika
260
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
JP - Japonsko
Počet stran výsledku
9
Strana od-do
253-261
Kód UT WoS článku
001041173400002
EID výsledku v databázi Scopus
2-s2.0-85165220837