A Deep Learning Aided Drowning Diagnosis for Forensic Investigations using Post-Mortem Lung CT Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00344449" target="_blank" >RIV/68407700:21220/20:00344449 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/EMBC44109.2020.9175731" target="_blank" >https://doi.org/10.1109/EMBC44109.2020.9175731</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EMBC44109.2020.9175731" target="_blank" >10.1109/EMBC44109.2020.9175731</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Deep Learning Aided Drowning Diagnosis for Forensic Investigations using Post-Mortem Lung CT Images
Popis výsledku v původním jazyce
Feasibility of computer-aided diagnosis (CAD) systems has been demonstrated in the field of medical image diagnosis. Especially, deep learning based CAD systems showed high performance thanks to its capability of image recognition. However, there is no CAD system developed for post-mortem imaging diagnosis and thus it is still unclear if the CAD system is effective for this purpose. Particulally, the drowning diagnosis is one of the most difficult tasks in the field of forensic medicine because findings of the post-mortem image diagnosis are not specific. To address this issue, we develop a CAD system consisting of a deep convolution neural network (DCNN) to classify post-mortem lung computed tomography (CT) images into two categories of drowning and non-drowning cases. The DCNN was trained by means of transfer learning and performance evaluation was conducted by 10-fold cross validation using 140 drowning cases and 140 non-drowning cases of the CT images. The area under the receiver operating characteristic curve (AUC-ROC) for the DCNN was achieved 0.88 in average. This high performance clearly demonstrated that the proposed DCNN based CAD system has a potential for post-mortem image diagnosis of drowning.
Název v anglickém jazyce
A Deep Learning Aided Drowning Diagnosis for Forensic Investigations using Post-Mortem Lung CT Images
Popis výsledku anglicky
Feasibility of computer-aided diagnosis (CAD) systems has been demonstrated in the field of medical image diagnosis. Especially, deep learning based CAD systems showed high performance thanks to its capability of image recognition. However, there is no CAD system developed for post-mortem imaging diagnosis and thus it is still unclear if the CAD system is effective for this purpose. Particulally, the drowning diagnosis is one of the most difficult tasks in the field of forensic medicine because findings of the post-mortem image diagnosis are not specific. To address this issue, we develop a CAD system consisting of a deep convolution neural network (DCNN) to classify post-mortem lung computed tomography (CT) images into two categories of drowning and non-drowning cases. The DCNN was trained by means of transfer learning and performance evaluation was conducted by 10-fold cross validation using 140 drowning cases and 140 non-drowning cases of the CT images. The area under the receiver operating characteristic curve (AUC-ROC) for the DCNN was achieved 0.88 in average. This high performance clearly demonstrated that the proposed DCNN based CAD system has a potential for post-mortem image diagnosis of drowning.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISBN
9781728119908
ISSN
—
e-ISSN
1558-4615
Počet stran výsledku
4
Strana od-do
1262-1265
Název nakladatele
IEEE
Místo vydání
Montreal
Místo konání akce
Montreal
Datum konání akce
20. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000621592201144