New insights into the DNA extraction and PCR amplification of minute ascomycetes in the genus Laboulbenia (Pezizomycotina, Laboulbeniales)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F24%3A43907996" target="_blank" >RIV/60076658:12310/24:43907996 - isvavai.cz</a>
Výsledek na webu
<a href="https://imafungus.biomedcentral.com/articles/10.1186/s43008-024-00146-9" target="_blank" >https://imafungus.biomedcentral.com/articles/10.1186/s43008-024-00146-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s43008-024-00146-9" target="_blank" >10.1186/s43008-024-00146-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New insights into the DNA extraction and PCR amplification of minute ascomycetes in the genus Laboulbenia (Pezizomycotina, Laboulbeniales)
Popis výsledku v původním jazyce
Molecular studies of fungi within the order Laboulbeniales (Ascomycota, Pezizomycotina) have been hampered for years because of their minute size, inability to grow in axenic culture, and lack of reliable and cost-efficient DNA extraction protocols. In particular, the genus Laboulbenia is notorious for low success with DNA extraction and polymerase chain reaction (PCR) amplification. This is attributed to the presence of melanin, a molecule known to inhibit PCR, in the cells. We evaluated the efficacy of a standard single cell-based DNA extraction protocol by halving the recommended amount of reagents to reduce the cost per extraction and adding bovine serum albumin (BSA) during the multiple displacement amplification step to reverse the effect of melanin. A total of 196 extractions were made, 111 of which were successful. We found that halving the reagents used in the single cell-based extraction kit did not significantly affect the probability of successful DNA extraction. Using the halved protocol reduces cost and resource consumption. Moreover, there was no significant difference in the probability of successfully extracting DNA based on whether BSA was added or not, suggesting that the amount of melanin present in cells of the thallus has no major inhibitory effect on PCR. We generated 277 sequences from five loci, but amplification of the internal transcribed spacer region, the mitochondrial small subunit rDNA, and protein-coding genes remains challenging. The probability of successfully extracting DNA from Laboulbeniales was also impacted by specimen storage methods, with material preserved in > 95% ethanol yielding higher success rates compared to material stored in 70% ethanol and dried material. We emphasize the importance of proper preservation of material and propose the design of Laboulbeniales-specific primers to overcome the problems of primer mismatches and contaminants. Our new insights apply not only to the genus Laboulbenia; Laboulbeniales generally are understudied, and the vast majority of species remain unsequenced. New and approachable molecular developments will benefit the study of Laboulbeniales, helping to elucidate the true diversity and evolutionary relationships of these peculiar microfungi.
Název v anglickém jazyce
New insights into the DNA extraction and PCR amplification of minute ascomycetes in the genus Laboulbenia (Pezizomycotina, Laboulbeniales)
Popis výsledku anglicky
Molecular studies of fungi within the order Laboulbeniales (Ascomycota, Pezizomycotina) have been hampered for years because of their minute size, inability to grow in axenic culture, and lack of reliable and cost-efficient DNA extraction protocols. In particular, the genus Laboulbenia is notorious for low success with DNA extraction and polymerase chain reaction (PCR) amplification. This is attributed to the presence of melanin, a molecule known to inhibit PCR, in the cells. We evaluated the efficacy of a standard single cell-based DNA extraction protocol by halving the recommended amount of reagents to reduce the cost per extraction and adding bovine serum albumin (BSA) during the multiple displacement amplification step to reverse the effect of melanin. A total of 196 extractions were made, 111 of which were successful. We found that halving the reagents used in the single cell-based extraction kit did not significantly affect the probability of successful DNA extraction. Using the halved protocol reduces cost and resource consumption. Moreover, there was no significant difference in the probability of successfully extracting DNA based on whether BSA was added or not, suggesting that the amount of melanin present in cells of the thallus has no major inhibitory effect on PCR. We generated 277 sequences from five loci, but amplification of the internal transcribed spacer region, the mitochondrial small subunit rDNA, and protein-coding genes remains challenging. The probability of successfully extracting DNA from Laboulbeniales was also impacted by specimen storage methods, with material preserved in > 95% ethanol yielding higher success rates compared to material stored in 70% ethanol and dried material. We emphasize the importance of proper preservation of material and propose the design of Laboulbeniales-specific primers to overcome the problems of primer mismatches and contaminants. Our new insights apply not only to the genus Laboulbenia; Laboulbeniales generally are understudied, and the vast majority of species remain unsequenced. New and approachable molecular developments will benefit the study of Laboulbeniales, helping to elucidate the true diversity and evolutionary relationships of these peculiar microfungi.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10612 - Mycology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IMA Fungus
ISSN
2210-6340
e-ISSN
2210-6359
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
001244953600001
EID výsledku v databázi Scopus
2-s2.0-85195955595