Multi-Class Microscopic Image Analysis of Protozoan Parasites Using Convolutional Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F24%3A43908124" target="_blank" >RIV/60076658:12310/24:43908124 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12520/24:43908124
Výsledek na webu
<a href="https://doi.org/10.3897/jucs.112639" target="_blank" >https://doi.org/10.3897/jucs.112639</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3897/jucs.112639" target="_blank" >10.3897/jucs.112639</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Class Microscopic Image Analysis of Protozoan Parasites Using Convolutional Neural Network
Popis výsledku v původním jazyce
Protozoan parasites cause a wide range of devastating diseases in various kinds of organisms, including humans. It may be lethal if untreated promptly. To detect specific diseasecausing parasites, a wide range of immunological and molecular technologies are now widely available. However, all of this depends on the worker's expertise and are time-consuming, errorprone, and expensive. With the development of technology, compared to traditional biological techniques, convolutional neural networks have reached excellent achievements in image classification, cutting costs while attaining an overall higher accuracy and eliminating human error. Many models include numerous convolutional layers and offer an accuracy between 90 and 95 percent. In this study, 4740 microscopic images of protozoan parasites from six classes with a balanced dataset and an 80-20% split were classified using three convolutional layers with stochastic gradient descent as an optimizer. A 5-fold cross-validation approach is used to evaluate the proposed method. We also examine and evaluate with deep learning models namely VGG16, ResNet50, and InceptionV3. The performance evaluation of the proposed model shows an accuracy of 94% with a precision range (of 0.83-0.99) and a recall range (of 0.76-1.00), respectively. The retrained model was able to recognize and classify all 6 different parasites. Except for class Leishmania, where 24% of images are incorrectly classified as Plasmodium and Trichomonas, the model demonstrates that most cases are correctly identified.
Název v anglickém jazyce
Multi-Class Microscopic Image Analysis of Protozoan Parasites Using Convolutional Neural Network
Popis výsledku anglicky
Protozoan parasites cause a wide range of devastating diseases in various kinds of organisms, including humans. It may be lethal if untreated promptly. To detect specific diseasecausing parasites, a wide range of immunological and molecular technologies are now widely available. However, all of this depends on the worker's expertise and are time-consuming, errorprone, and expensive. With the development of technology, compared to traditional biological techniques, convolutional neural networks have reached excellent achievements in image classification, cutting costs while attaining an overall higher accuracy and eliminating human error. Many models include numerous convolutional layers and offer an accuracy between 90 and 95 percent. In this study, 4740 microscopic images of protozoan parasites from six classes with a balanced dataset and an 80-20% split were classified using three convolutional layers with stochastic gradient descent as an optimizer. A 5-fold cross-validation approach is used to evaluate the proposed method. We also examine and evaluate with deep learning models namely VGG16, ResNet50, and InceptionV3. The performance evaluation of the proposed model shows an accuracy of 94% with a precision range (of 0.83-0.99) and a recall range (of 0.76-1.00), respectively. The retrained model was able to recognize and classify all 6 different parasites. Except for class Leishmania, where 24% of images are incorrectly classified as Plasmodium and Trichomonas, the model demonstrates that most cases are correctly identified.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Universal Computer Science
ISSN
0948-695X
e-ISSN
0948-6968
Svazek periodika
30
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
13
Strana od-do
420-432
Kód UT WoS článku
001237071800002
EID výsledku v databázi Scopus
2-s2.0-85193009261