Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-Class Microscopic Image Analysis of Protozoan Parasites Using Convolutional Neural Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F24%3A43908124" target="_blank" >RIV/60076658:12310/24:43908124 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60076658:12520/24:43908124

  • Výsledek na webu

    <a href="https://doi.org/10.3897/jucs.112639" target="_blank" >https://doi.org/10.3897/jucs.112639</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3897/jucs.112639" target="_blank" >10.3897/jucs.112639</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-Class Microscopic Image Analysis of Protozoan Parasites Using Convolutional Neural Network

  • Popis výsledku v původním jazyce

    Protozoan parasites cause a wide range of devastating diseases in various kinds of organisms, including humans. It may be lethal if untreated promptly. To detect specific diseasecausing parasites, a wide range of immunological and molecular technologies are now widely available. However, all of this depends on the worker&apos;s expertise and are time-consuming, errorprone, and expensive. With the development of technology, compared to traditional biological techniques, convolutional neural networks have reached excellent achievements in image classification, cutting costs while attaining an overall higher accuracy and eliminating human error. Many models include numerous convolutional layers and offer an accuracy between 90 and 95 percent. In this study, 4740 microscopic images of protozoan parasites from six classes with a balanced dataset and an 80-20% split were classified using three convolutional layers with stochastic gradient descent as an optimizer. A 5-fold cross-validation approach is used to evaluate the proposed method. We also examine and evaluate with deep learning models namely VGG16, ResNet50, and InceptionV3. The performance evaluation of the proposed model shows an accuracy of 94% with a precision range (of 0.83-0.99) and a recall range (of 0.76-1.00), respectively. The retrained model was able to recognize and classify all 6 different parasites. Except for class Leishmania, where 24% of images are incorrectly classified as Plasmodium and Trichomonas, the model demonstrates that most cases are correctly identified.

  • Název v anglickém jazyce

    Multi-Class Microscopic Image Analysis of Protozoan Parasites Using Convolutional Neural Network

  • Popis výsledku anglicky

    Protozoan parasites cause a wide range of devastating diseases in various kinds of organisms, including humans. It may be lethal if untreated promptly. To detect specific diseasecausing parasites, a wide range of immunological and molecular technologies are now widely available. However, all of this depends on the worker&apos;s expertise and are time-consuming, errorprone, and expensive. With the development of technology, compared to traditional biological techniques, convolutional neural networks have reached excellent achievements in image classification, cutting costs while attaining an overall higher accuracy and eliminating human error. Many models include numerous convolutional layers and offer an accuracy between 90 and 95 percent. In this study, 4740 microscopic images of protozoan parasites from six classes with a balanced dataset and an 80-20% split were classified using three convolutional layers with stochastic gradient descent as an optimizer. A 5-fold cross-validation approach is used to evaluate the proposed method. We also examine and evaluate with deep learning models namely VGG16, ResNet50, and InceptionV3. The performance evaluation of the proposed model shows an accuracy of 94% with a precision range (of 0.83-0.99) and a recall range (of 0.76-1.00), respectively. The retrained model was able to recognize and classify all 6 different parasites. Except for class Leishmania, where 24% of images are incorrectly classified as Plasmodium and Trichomonas, the model demonstrates that most cases are correctly identified.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Universal Computer Science

  • ISSN

    0948-695X

  • e-ISSN

    0948-6968

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    AT - Rakouská republika

  • Počet stran výsledku

    13

  • Strana od-do

    420-432

  • Kód UT WoS článku

    001237071800002

  • EID výsledku v databázi Scopus

    2-s2.0-85193009261