Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Network based definition of functional regions: A graph theory approach for spatial distribution of traffic flows

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12410%2F20%3A43902077" target="_blank" >RIV/60076658:12410/20:43902077 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/20:73603203

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0966692320303288" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0966692320303288</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jtrangeo.2020.102855" target="_blank" >10.1016/j.jtrangeo.2020.102855</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Network based definition of functional regions: A graph theory approach for spatial distribution of traffic flows

  • Popis výsledku v původním jazyce

    Functional regions are autonomous (internally coherent and externally self-contained) spatial structures based on vector data, so-called spatial interactions. Typically, travel-to-work, travel-to-school flows and migrations are analysed by various methods of functional regional taxonomy in order to define functional regions. There is still another type of statistically recorded vector data which has, up to now, rarely been used for this purpose: traffic flows. However, these data differ distinctly from the above mentioned flows. In this paper we pursue two objectives: (i) to define functional transport regions based on a graph theoretic analysis of individual traffic flows, and (ii) to add knowledge to the issue of the self-containment of functional transport regions. The specific nature of transport data compared to the above-mentioned spatial interactions requires a specific methodological approach, which is presented in the paper. The existing graph theoretic procedures do not seem suitable for the definition of functional transport regions due to data specifics. Therefore our analysis is based on a rough analogy to the minimum cut method – we identify minimum flows in a graph representing a transport network. The territory of the Czech Republic is used as the example. Two regional systems are defined (based on 2000 and 2016 data) and compared in time. The paper achieves two main findings. First, the proposed methodological approach allows us to define autonomous functional transport regions, and the means to calculate their self-containment is discussed. Second, functional transport regions in the Czech Republic show unexpected stability over time compared to functional regions based on such spatial interactions as commuting flows.

  • Název v anglickém jazyce

    Network based definition of functional regions: A graph theory approach for spatial distribution of traffic flows

  • Popis výsledku anglicky

    Functional regions are autonomous (internally coherent and externally self-contained) spatial structures based on vector data, so-called spatial interactions. Typically, travel-to-work, travel-to-school flows and migrations are analysed by various methods of functional regional taxonomy in order to define functional regions. There is still another type of statistically recorded vector data which has, up to now, rarely been used for this purpose: traffic flows. However, these data differ distinctly from the above mentioned flows. In this paper we pursue two objectives: (i) to define functional transport regions based on a graph theoretic analysis of individual traffic flows, and (ii) to add knowledge to the issue of the self-containment of functional transport regions. The specific nature of transport data compared to the above-mentioned spatial interactions requires a specific methodological approach, which is presented in the paper. The existing graph theoretic procedures do not seem suitable for the definition of functional transport regions due to data specifics. Therefore our analysis is based on a rough analogy to the minimum cut method – we identify minimum flows in a graph representing a transport network. The territory of the Czech Republic is used as the example. Two regional systems are defined (based on 2000 and 2016 data) and compared in time. The paper achieves two main findings. First, the proposed methodological approach allows us to define autonomous functional transport regions, and the means to calculate their self-containment is discussed. Second, functional transport regions in the Czech Republic show unexpected stability over time compared to functional regions based on such spatial interactions as commuting flows.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50703 - Transport planning and social aspects of transport (transport engineering to be 2.1)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-21360S" target="_blank" >GA20-21360S: Prostorové interakce a jejich konceptualizace: analýza selektivity, neurčitosti a hierarchie</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Transport Geography

  • ISSN

    0966-6923

  • e-ISSN

  • Svazek periodika

    88

  • Číslo periodika v rámci svazku

    říjen

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    000582208900041

  • EID výsledku v databázi Scopus

    2-s2.0-85090295852