Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F11%3A43875649" target="_blank" >RIV/60076658:12510/11:43875649 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction

  • Popis výsledku v původním jazyce

    We discuss the prediction of a spatial variable of a multivariate mark composed of both dependent and explanatory variables. The marks are location-dependent and they are attached to a point process. We assume that the marks are assigned independently, conditionally on an unknown underlying parametric field. We compare (i) the classical non-parametric Nadaraya--Watson kernel estimator based on the dependent variable (ii) estimators obtained under an assumption of local parametric model where explanatoryvariables of the local model are estimated through kernel estimation and (iii) a kernel estimator of the result of the parametric model, supposed here to be a Uniformly Minimum Variance Unbiased Estimator derived under the local parametric model when complete and sufficient statistics are available. The comparison is done asymptotically and by simulations in special cases. The procedure for better estimator selection is then illustrated on a real-life data set.

  • Název v anglickém jazyce

    Spatial prediction of the mark of a location-dependent marked point process: How the use of a parametric model may improve prediction

  • Popis výsledku anglicky

    We discuss the prediction of a spatial variable of a multivariate mark composed of both dependent and explanatory variables. The marks are location-dependent and they are attached to a point process. We assume that the marks are assigned independently, conditionally on an unknown underlying parametric field. We compare (i) the classical non-parametric Nadaraya--Watson kernel estimator based on the dependent variable (ii) estimators obtained under an assumption of local parametric model where explanatoryvariables of the local model are estimated through kernel estimation and (iii) a kernel estimator of the result of the parametric model, supposed here to be a Uniformly Minimum Variance Unbiased Estimator derived under the local parametric model when complete and sufficient statistics are available. The comparison is done asymptotically and by simulations in special cases. The procedure for better estimator selection is then illustrated on a real-life data set.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP201%2F10%2F0472" target="_blank" >GAP201/10/0472: Stochastická geometrie - nehomogenita, kótování, dynamika a stereologie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Svazek periodika

    47

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    19

  • Strana od-do

    696-714

  • Kód UT WoS článku

    000297954400003

  • EID výsledku v databázi Scopus