European Insurance Market Analysis: A Multivariate Clustering approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F18%3A43898943" target="_blank" >RIV/60076658:12510/18:43898943 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
European Insurance Market Analysis: A Multivariate Clustering approach
Popis výsledku v původním jazyce
Clustering has been proved to extract valuable information resided in complex and massive data sets. Motivated by this evidence, this paper is aimed to provide a multivariate clustering of European insurance market in terms of the insurance penetration curves of European countries. Yet, at the same time, this clustering is provided through two different cases, where the first case considers only the magnitude (size) of these curves, and the second considers only their shape. In this paper, two partitional clustering methods are utilized, k-means and Gaussian mixture model, with two distance measures, the Euclidean and Mahalanobis distance, respectively. Both clustering methods form clusters within a sample of 34 European countries observed between 2004 and 2016; that is before, during and post-financial and sovereign debt crises. The clustering solutions also reveal the extent to which the employed clustering methods and distance measures are being able to capture the distinctive properties of the original curves as depicted during the period under examination.
Název v anglickém jazyce
European Insurance Market Analysis: A Multivariate Clustering approach
Popis výsledku anglicky
Clustering has been proved to extract valuable information resided in complex and massive data sets. Motivated by this evidence, this paper is aimed to provide a multivariate clustering of European insurance market in terms of the insurance penetration curves of European countries. Yet, at the same time, this clustering is provided through two different cases, where the first case considers only the magnitude (size) of these curves, and the second considers only their shape. In this paper, two partitional clustering methods are utilized, k-means and Gaussian mixture model, with two distance measures, the Euclidean and Mahalanobis distance, respectively. Both clustering methods form clusters within a sample of 34 European countries observed between 2004 and 2016; that is before, during and post-financial and sovereign debt crises. The clustering solutions also reveal the extent to which the employed clustering methods and distance measures are being able to capture the distinctive properties of the original curves as depicted during the period under examination.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th International Scientific Conference INPROFORUM. Innovations, Enterprises, Regions and Management
ISBN
978-80-7394-726-2
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
7
Strana od-do
328-334
Název nakladatele
Jihočeská univerzita v Českých Budějovicích, Ekonomická fakulta
Místo vydání
České Budějovice
Místo konání akce
České Budějovice
Datum konání akce
1. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—