Testing global and local dependence of point patterns on covariates in parametric models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F21%3A43900864" target="_blank" >RIV/60076658:12510/21:43900864 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2211675320300300?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2211675320300300?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.spasta.2020.100436" target="_blank" >10.1016/j.spasta.2020.100436</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Testing global and local dependence of point patterns on covariates in parametric models
Popis výsledku v původním jazyce
Testing for a covariate effect in a parametric point process model is usually done through the Wald test, which relies on an asymptotic null distribution of the test statistic. We propose a Monte Carlo version of the test that also allows local investigation of the covariate effect in the globally fitted model. Two different test statistics are suggested for this purpose: the first, a spatial statistic computed at every location of the observation window, resembles the classical -statistic that is usually used in general linear models (GLMs) to express the distance between a model and its sub model. This statistic allows one to detect locations where the smoothed point process residuals are reduced by adding the interesting covariates into the model. The second spatial statistic tries to capture local improvements in the shape of the predicted intensity caused by an interesting, continuous covariate. A simulation scheme resembling the permutation inference for GLMs is used to obtain the null distribution of the statistics. Thereafter, a Monte Carlo test with graphical interpretation (a global envelope test) is applied to the empirical and simulated statistic fields to determine the global significance of the covariate and the spatially significant areas. We study the empirical significance level and power of the test in different scenarios and, by applying the test to simulated and real point pattern data, show that the proposed statistics can be valuable for model construction.
Název v anglickém jazyce
Testing global and local dependence of point patterns on covariates in parametric models
Popis výsledku anglicky
Testing for a covariate effect in a parametric point process model is usually done through the Wald test, which relies on an asymptotic null distribution of the test statistic. We propose a Monte Carlo version of the test that also allows local investigation of the covariate effect in the globally fitted model. Two different test statistics are suggested for this purpose: the first, a spatial statistic computed at every location of the observation window, resembles the classical -statistic that is usually used in general linear models (GLMs) to express the distance between a model and its sub model. This statistic allows one to detect locations where the smoothed point process residuals are reduced by adding the interesting covariates into the model. The second spatial statistic tries to capture local improvements in the shape of the predicted intensity caused by an interesting, continuous covariate. A simulation scheme resembling the permutation inference for GLMs is used to obtain the null distribution of the statistics. Thereafter, a Monte Carlo test with graphical interpretation (a global envelope test) is applied to the empirical and simulated statistic fields to determine the global significance of the covariate and the spatially significant areas. We study the empirical significance level and power of the test in different scenarios and, by applying the test to simulated and real point pattern data, show that the proposed statistics can be valuable for model construction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04412S" target="_blank" >GA19-04412S: Nové přístupy k modelování a statistice náhodných množin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Spatial Statistics
ISSN
2211-6753
e-ISSN
—
Svazek periodika
nn
Číslo periodika v rámci svazku
42
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
000635279000005
EID výsledku v databázi Scopus
2-s2.0-85081208705