Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Testing global and local dependence of point patterns on covariates in parametric models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F21%3A43900864" target="_blank" >RIV/60076658:12510/21:43900864 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2211675320300300?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2211675320300300?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.spasta.2020.100436" target="_blank" >10.1016/j.spasta.2020.100436</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Testing global and local dependence of point patterns on covariates in parametric models

  • Popis výsledku v původním jazyce

    Testing for a covariate effect in a parametric point process model is usually done through the Wald test, which relies on an asymptotic null distribution of the test statistic. We propose a Monte Carlo version of the test that also allows local investigation of the covariate effect in the globally fitted model. Two different test statistics are suggested for this purpose: the first, a spatial statistic computed at every location of the observation window, resembles the classical -statistic that is usually used in general linear models (GLMs) to express the distance between a model and its sub model. This statistic allows one to detect locations where the smoothed point process residuals are reduced by adding the interesting covariates into the model. The second spatial statistic tries to capture local improvements in the shape of the predicted intensity caused by an interesting, continuous covariate. A simulation scheme resembling the permutation inference for GLMs is used to obtain the null distribution of the statistics. Thereafter, a Monte Carlo test with graphical interpretation (a global envelope test) is applied to the empirical and simulated statistic fields to determine the global significance of the covariate and the spatially significant areas. We study the empirical significance level and power of the test in different scenarios and, by applying the test to simulated and real point pattern data, show that the proposed statistics can be valuable for model construction.

  • Název v anglickém jazyce

    Testing global and local dependence of point patterns on covariates in parametric models

  • Popis výsledku anglicky

    Testing for a covariate effect in a parametric point process model is usually done through the Wald test, which relies on an asymptotic null distribution of the test statistic. We propose a Monte Carlo version of the test that also allows local investigation of the covariate effect in the globally fitted model. Two different test statistics are suggested for this purpose: the first, a spatial statistic computed at every location of the observation window, resembles the classical -statistic that is usually used in general linear models (GLMs) to express the distance between a model and its sub model. This statistic allows one to detect locations where the smoothed point process residuals are reduced by adding the interesting covariates into the model. The second spatial statistic tries to capture local improvements in the shape of the predicted intensity caused by an interesting, continuous covariate. A simulation scheme resembling the permutation inference for GLMs is used to obtain the null distribution of the statistics. Thereafter, a Monte Carlo test with graphical interpretation (a global envelope test) is applied to the empirical and simulated statistic fields to determine the global significance of the covariate and the spatially significant areas. We study the empirical significance level and power of the test in different scenarios and, by applying the test to simulated and real point pattern data, show that the proposed statistics can be valuable for model construction.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-04412S" target="_blank" >GA19-04412S: Nové přístupy k modelování a statistice náhodných množin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Spatial Statistics

  • ISSN

    2211-6753

  • e-ISSN

  • Svazek periodika

    nn

  • Číslo periodika v rámci svazku

    42

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    000635279000005

  • EID výsledku v databázi Scopus

    2-s2.0-85081208705