Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A user DNS fingerprint dataset

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F24%3A43909374" target="_blank" >RIV/60076658:12510/24:43909374 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/24:00377788

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352340924003585" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352340924003585</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dib.2024.110389" target="_blank" >10.1016/j.dib.2024.110389</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A user DNS fingerprint dataset

  • Popis výsledku v původním jazyce

    Using a user DNS fingerprint allows one to identify a specific network user regardless of the knowledge of his IP address. This method is proper, for example, when examining the behavior of a monitored network user in more depth. In contrast to other studies, this work introduces a dataset for possible user identification based only on the knowledge of its DNS fingerprint created from the previously sent DNS queries. We created a large dataset from the real network traffic of a metropolitan Internet service provider. The dataset was created from 2.3 billion DNS queries representing 6.2 million different domain names. The data collection took place over three months from 12/2023 to 02/2024. The dataset contains a detailed user activity description in the sense of overall daily activity statistics and detailed 24 h activity statistics. Each dataset record contains a list of 1137 classification attributes. The absolutely unique feature of this data set is the classification of user activity based on categories of content accessed by a user. The new dataset can be used for the creation of machine learning models, allowing the identification of a specific user without direct knowledge of their IP addresses or additional network location information. The dataset can also serve as a reference dataset for the creation of DNS fingerprints of users. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY -NC license ( http://creativecommons.org/licenses/by-nc/4.0/ )

  • Název v anglickém jazyce

    A user DNS fingerprint dataset

  • Popis výsledku anglicky

    Using a user DNS fingerprint allows one to identify a specific network user regardless of the knowledge of his IP address. This method is proper, for example, when examining the behavior of a monitored network user in more depth. In contrast to other studies, this work introduces a dataset for possible user identification based only on the knowledge of its DNS fingerprint created from the previously sent DNS queries. We created a large dataset from the real network traffic of a metropolitan Internet service provider. The dataset was created from 2.3 billion DNS queries representing 6.2 million different domain names. The data collection took place over three months from 12/2023 to 02/2024. The dataset contains a detailed user activity description in the sense of overall daily activity statistics and detailed 24 h activity statistics. Each dataset record contains a list of 1137 classification attributes. The absolutely unique feature of this data set is the classification of user activity based on categories of content accessed by a user. The new dataset can be used for the creation of machine learning models, allowing the identification of a specific user without direct knowledge of their IP addresses or additional network location information. The dataset can also serve as a reference dataset for the creation of DNS fingerprints of users. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY -NC license ( http://creativecommons.org/licenses/by-nc/4.0/ )

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Data in Brief

  • ISSN

    2352-3409

  • e-ISSN

  • Svazek periodika

    54

  • Číslo periodika v rámci svazku

    June 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    001235978600001

  • EID výsledku v databázi Scopus

    2-s2.0-85190324602