A user DNS fingerprint dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F24%3A43909374" target="_blank" >RIV/60076658:12510/24:43909374 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/24:00377788
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352340924003585" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352340924003585</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dib.2024.110389" target="_blank" >10.1016/j.dib.2024.110389</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A user DNS fingerprint dataset
Popis výsledku v původním jazyce
Using a user DNS fingerprint allows one to identify a specific network user regardless of the knowledge of his IP address. This method is proper, for example, when examining the behavior of a monitored network user in more depth. In contrast to other studies, this work introduces a dataset for possible user identification based only on the knowledge of its DNS fingerprint created from the previously sent DNS queries. We created a large dataset from the real network traffic of a metropolitan Internet service provider. The dataset was created from 2.3 billion DNS queries representing 6.2 million different domain names. The data collection took place over three months from 12/2023 to 02/2024. The dataset contains a detailed user activity description in the sense of overall daily activity statistics and detailed 24 h activity statistics. Each dataset record contains a list of 1137 classification attributes. The absolutely unique feature of this data set is the classification of user activity based on categories of content accessed by a user. The new dataset can be used for the creation of machine learning models, allowing the identification of a specific user without direct knowledge of their IP addresses or additional network location information. The dataset can also serve as a reference dataset for the creation of DNS fingerprints of users. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY -NC license ( http://creativecommons.org/licenses/by-nc/4.0/ )
Název v anglickém jazyce
A user DNS fingerprint dataset
Popis výsledku anglicky
Using a user DNS fingerprint allows one to identify a specific network user regardless of the knowledge of his IP address. This method is proper, for example, when examining the behavior of a monitored network user in more depth. In contrast to other studies, this work introduces a dataset for possible user identification based only on the knowledge of its DNS fingerprint created from the previously sent DNS queries. We created a large dataset from the real network traffic of a metropolitan Internet service provider. The dataset was created from 2.3 billion DNS queries representing 6.2 million different domain names. The data collection took place over three months from 12/2023 to 02/2024. The dataset contains a detailed user activity description in the sense of overall daily activity statistics and detailed 24 h activity statistics. Each dataset record contains a list of 1137 classification attributes. The absolutely unique feature of this data set is the classification of user activity based on categories of content accessed by a user. The new dataset can be used for the creation of machine learning models, allowing the identification of a specific user without direct knowledge of their IP addresses or additional network location information. The dataset can also serve as a reference dataset for the creation of DNS fingerprints of users. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY -NC license ( http://creativecommons.org/licenses/by-nc/4.0/ )
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data in Brief
ISSN
2352-3409
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
June 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
001235978600001
EID výsledku v databázi Scopus
2-s2.0-85190324602