Least Information Loss (LIL) Conversion of Digital Images and Lessons Learned for Scientific Image Inspection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F16%3A43890404" target="_blank" >RIV/60076658:12520/16:43890404 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-3-319-31744-1_47" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-31744-1_47</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-31744-1_47" target="_blank" >10.1007/978-3-319-31744-1_47</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Least Information Loss (LIL) Conversion of Digital Images and Lessons Learned for Scientific Image Inspection
Popis výsledku v původním jazyce
Nowadays, most digital images are captured and stored at 16 or 12 bit per pixel integers, however, most personal computers can only display images in 8 bit per pixel integers. Besides, each microarray experiment produces hundreds of images which need larger storage space if images are stored in 16 or 12 bit. This is in most cases done by conversion of single images by an algorithm, which is not apparent to the user. A simple method to avoid the problem is converting 16 or 12-bit images to 8 bit by direct division of the 12-bit intervals into 256 sections and counting the number of points in each of them. Although this approach preserves the proportion of camera signals, it leads to severe loss of information due to losses in intensity depth resolution. The main aim of this article is introducing least information loss (LIL) algorithm as a novel approach to minimize the information loss caused by the transformation the primary camera signals (16 or 12 bit per pixels) to 8 bit per pixel. Least information loss algorithm is based on the omission of unoccupied intensities and transforming remaining points to 8 bit. This approach not only preserve information by storing intervals in the image EXIF file for further analysis, but also it improves object contrast for better visual inspection and object oriented classification. LIL algorithm may be applied also in image series where it enables comparison of primary camera data at scales identical over the whole series. This is particularly important in cases that the coloration is only apparent and reflect various physical processes such as in microscopy imaging. (C) Springer International Publishing Switzerland 2016.
Název v anglickém jazyce
Least Information Loss (LIL) Conversion of Digital Images and Lessons Learned for Scientific Image Inspection
Popis výsledku anglicky
Nowadays, most digital images are captured and stored at 16 or 12 bit per pixel integers, however, most personal computers can only display images in 8 bit per pixel integers. Besides, each microarray experiment produces hundreds of images which need larger storage space if images are stored in 16 or 12 bit. This is in most cases done by conversion of single images by an algorithm, which is not apparent to the user. A simple method to avoid the problem is converting 16 or 12-bit images to 8 bit by direct division of the 12-bit intervals into 256 sections and counting the number of points in each of them. Although this approach preserves the proportion of camera signals, it leads to severe loss of information due to losses in intensity depth resolution. The main aim of this article is introducing least information loss (LIL) algorithm as a novel approach to minimize the information loss caused by the transformation the primary camera signals (16 or 12 bit per pixels) to 8 bit per pixel. Least information loss algorithm is based on the omission of unoccupied intensities and transforming remaining points to 8 bit. This approach not only preserve information by storing intervals in the image EXIF file for further analysis, but also it improves object contrast for better visual inspection and object oriented classification. LIL algorithm may be applied also in image series where it enables comparison of primary camera data at scales identical over the whole series. This is particularly important in cases that the coloration is only apparent and reflect various physical processes such as in microscopy imaging. (C) Springer International Publishing Switzerland 2016.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
EI - Biotechnologie a bionika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-319-31743-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
527-536
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Granada; Spain
Datum konání akce
20. 4. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—