Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Least Information Loss (LIL) Conversion of Digital Images and Lessons Learned for Scientific Image Inspection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F16%3A43890404" target="_blank" >RIV/60076658:12520/16:43890404 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/chapter/10.1007/978-3-319-31744-1_47" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-31744-1_47</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-31744-1_47" target="_blank" >10.1007/978-3-319-31744-1_47</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Least Information Loss (LIL) Conversion of Digital Images and Lessons Learned for Scientific Image Inspection

  • Popis výsledku v původním jazyce

    Nowadays, most digital images are captured and stored at 16 or 12 bit per pixel integers, however, most personal computers can only display images in 8 bit per pixel integers. Besides, each microarray experiment produces hundreds of images which need larger storage space if images are stored in 16 or 12 bit. This is in most cases done by conversion of single images by an algorithm, which is not apparent to the user. A simple method to avoid the problem is converting 16 or 12-bit images to 8 bit by direct division of the 12-bit intervals into 256 sections and counting the number of points in each of them. Although this approach preserves the proportion of camera signals, it leads to severe loss of information due to losses in intensity depth resolution. The main aim of this article is introducing least information loss (LIL) algorithm as a novel approach to minimize the information loss caused by the transformation the primary camera signals (16 or 12 bit per pixels) to 8 bit per pixel. Least information loss algorithm is based on the omission of unoccupied intensities and transforming remaining points to 8 bit. This approach not only preserve information by storing intervals in the image EXIF file for further analysis, but also it improves object contrast for better visual inspection and object oriented classification. LIL algorithm may be applied also in image series where it enables comparison of primary camera data at scales identical over the whole series. This is particularly important in cases that the coloration is only apparent and reflect various physical processes such as in microscopy imaging. (C) Springer International Publishing Switzerland 2016.

  • Název v anglickém jazyce

    Least Information Loss (LIL) Conversion of Digital Images and Lessons Learned for Scientific Image Inspection

  • Popis výsledku anglicky

    Nowadays, most digital images are captured and stored at 16 or 12 bit per pixel integers, however, most personal computers can only display images in 8 bit per pixel integers. Besides, each microarray experiment produces hundreds of images which need larger storage space if images are stored in 16 or 12 bit. This is in most cases done by conversion of single images by an algorithm, which is not apparent to the user. A simple method to avoid the problem is converting 16 or 12-bit images to 8 bit by direct division of the 12-bit intervals into 256 sections and counting the number of points in each of them. Although this approach preserves the proportion of camera signals, it leads to severe loss of information due to losses in intensity depth resolution. The main aim of this article is introducing least information loss (LIL) algorithm as a novel approach to minimize the information loss caused by the transformation the primary camera signals (16 or 12 bit per pixels) to 8 bit per pixel. Least information loss algorithm is based on the omission of unoccupied intensities and transforming remaining points to 8 bit. This approach not only preserve information by storing intervals in the image EXIF file for further analysis, but also it improves object contrast for better visual inspection and object oriented classification. LIL algorithm may be applied also in image series where it enables comparison of primary camera data at scales identical over the whole series. This is particularly important in cases that the coloration is only apparent and reflect various physical processes such as in microscopy imaging. (C) Springer International Publishing Switzerland 2016.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    EI - Biotechnologie a bionika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science

  • ISBN

    978-3-319-31743-4

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    527-536

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Granada; Spain

  • Datum konání akce

    20. 4. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku